
Summary of Progress

In this report, we will focus on the results included in the Ph.D. dissertation of Dr. Fu-

Quan Wang, who was supported by the grant as a Research Assistant from January 1989

through December 1992. Dr. Wang completed his dissertation and received his Ph.D. degree

in December 1992. A copy of the dissertation is included as an Appendix to this report.

One journal paper has been accepted for publication based on this research [1], another has

been submitted for publication [2], and three more are in preparation for submission [3-5]. In

addition, several conference presentations have resulted from this work [6-10]. The following

sections contain a brief summary of the important aspects of this dissertation.

1) Erasurefree Sequential Decoding of Trellis Codes

The publication of Ungerboeck's seminal paper [1] on trellis coded modulation stimulated

wide interest in the construction of good trellis codes. However, very few papers have ad-

dressed the decoding problem. Most researchers assume that the Viterbi Algorithm (VA)

is used for decoding and trellis codes are then constructed by hand or by computer search

to maximize the minimum free Euclidean distance and/or minimize the number of nearest

neighbors. However, since both the hardware complexity and the computational effort of the

VA increase exponentially with the constraint length, u, it is not practical to implement the

VA for large u and its performance is limited to moderate bit error rates (BER's). To achieve

better performance requires the use of larger constraint lengths and suboptimum decoding.

It is well known that the computational effort and the hardware complexity of Sequential

Decoding (SD) algorithms are essentially independent of the constraint length u, so large u

can be used and arbitrarily small error probability can be obtained with reasonable complexity

and high decoding speed. Unfortunately, though, the computational effort of SD is a random

variable with a Pareto distribution. Although the undetected error probability can be made

arbitrarily small, some data cannot be completely decoded and the probability of incomplete

decoding (erasure) is usually on the order of 10 -2 to 10 -3. Thus, the performance of SD is

limited in the case where a feedback channel is not available. However, if the drawback of

erasures can be overcome, SD may be a good alternative to the VA even if a feedback channel

is not available.

The two most popular sequential decoding algorithms are the Fano Algorithm (FA) and

the Stack Algorithm (SA). The SA always extends the path with the best metric until it

reaches the terminal node. All previously extended paths must be stored during the process

of decoding. The storage of extended paths forms an ordered stack which may overflow if it

is finite. On the other hand, because it does not require any storage, the FA does not have

a stack overflow problem. In order to insure extending the path with the best metric (the

top path), the SA requires a large effort to continually re-order the stack. This problem can

be partially solved by using the stack bucket algorithm, but the FA still decodes faster than

the SA for rates below the channel cut-off rate. Thus the FA is preferred in most practical
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implementations, and wehavechosento focuson a Fano-typealgorithm.
The cut-off rate for two-dimensionalmodulation channelswith equiprobablesignalinghas

beencomputed. (The cut-off rate of a channelis the maximum rate that is practically achiev-
able usingsequentialdecoding.) For two dimensionalmodulation channels,we find that almost
all the potential codinggain of trellis codingwith sequentialdecodingis achievedby doubling
the number of channelsignals,as is the casewith channelcapacity.

Somepractical considerationsin the application of sequentialdecodingto trellis codeswere
also investigated. The Fanometric wasderivedand severalquantization schemeswerestudied
via simulation for PSK constellations.A simplemethod to increasethe distanceof trellis codes
in the tail wasdevelopedand the influenceof the tail on performancewasstudied. Simulation
results for largeconstraint length trellis codesusingsequentialdecodingshowthat performance
improves with increasingconstraint length and significant codinggains over Viterbi decoding
can be achieved.

A general erasurefree sequential decoding scheme called the Buffer Looking Algorithm

(BLA) has been proposed and the resynchronization problem of sequential decoding has been

addressed. The BLA in a Block Decoding mode (BLA-BD) guarantees resynchronization at

the beginning of each block but suffers some rate loss, i.e., has a lower spectral efficiency.

The performance of the BLA-BD has been analyzed and simulations have been performed.

They show that the BLA-BD with a constraint length v = 13 code, a block length of 256

symbols, and a speed factor of 6 can achieve about 1.1 dB coding gain at a BEK of 10 -s over

the Vitgerbi Algorithm (VA) with a constraint length v = 6 (64 state) code. The VA with

a 64 state code requires 64 computations to decode one branch, which is substantially larger

than the maximum average number of computations (speed factor) of 6 per branch for the

BLA-BD. The BLA-BD can achieve the channel cut-off rate bound and a full 1.4 dB coding

gain over the 64 state VA when larger constraint length codes are used. If the rate loss is

taken into account, more than 1 dB of coding gain over the VA can still be achieved.

A general resynchronization scheme has been presented for continuous sequential decoding.

It was shown that sequential decoding using this scheme has a high probability of resynchroniz-

ing successfully. This solves the rate loss problem resulting from the block decoding approach.

(Using this resynchronization scheme in the BLA-BD with a large block length may provide

the best way to achieve a flexible trade-off between rate loss and error performance in se-

quential decoding.) The performance of the BLA in a Continuous Decoding mode (BLA-CD)

using the resynchronization scheme was studied via simulations. They show that the BLA-CD

performs about as well as the BLA-BD at a BER of 10 -s and has a slightly larger spectral

efficiency.

2) Probabilistic Construction of Trellis Codes

Although many tellis codes have been constructed, few of them are intended for use with

sequential decoding. Porath and Aulin [12] proposed non-exhaustive search code construction

algorithms for finding good long systematic feedback trellis codes. Their algorithms are a
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generalizationof the Lin and Lyne algorithm [13]. (The Lin and Lyne algorithm hasalsobeen
usedto construct feedforward trellis codesfor usewith sequentialdecoding in [1].) This type
of algorithm guaranteesthat codeswith good column distancegrowth are found and thus is
a good choicefor constructing convolutionalor trellis codesfor usewith sequentialdecoding.
However,it is the code free distance that determinesthe error performance and the Lin and
Lyne algorithm cannot guaranteethat codeswith largefree distanceare found. Furthermore,
it is very difficult to evaluatethe freedistnaceof codeswith largeconstraint length. This poses
a problemfor the selectionof good codesusingany conventionalcodeconstruction algorithm.
Thus, we investigated a probabilistic approachto constructing good large constraint length
trellis codesfor usewith sequentialdecoding.

Simulation results for trellis codesshowthat many randomly chosencodesperform very
well. (This is consistant with what is expectedfrom the random coding bound.) Two proba-
bilistic construction algorithms were proposedto randomly construct large constraint length
trellis codesfor use with sequential decodingand trellis codes for 8-PSK modulation and
16-QAM modulation with constraint lengths up to v = 20 were obtained. The new short

constraint length codes were compared to the best known codes with short constraint lengths.

The results showed that the new codes perform almost as well as the best known codes at a

BER of 10 -s. Simulations were then used to show that the cut-off rate bound can be achieved

using the new large constraint length trellis codes with sequential decoding at BER's of 10 -s

to 10 -6. Up to 6.6 dB real coding gains over an uncoded system and up to 2.0 dB real coding

gains over 64-state trellis codes using Viterbi decoding can be achieved when the new codes

are used with sequential decoding.

3) Construction of Robustly Good Trellis Codes

The free distance has been used as the main criterion in the construction of trellis codes

for use with the VA. Since the computational effort for sequential decoding is a random

variable, parameters relating to the computational distribution of trellis codes should also be

taken into account in the selection of trellis codes for use with sequential decoding. We have

investigated the relationship between the computational effort of sequential decoding and the

column distance function of trellis codes and determined the best design criteria for trellis

codes with sequential decoding.

The influence of the column distance function and the distance profile of trellis codes on the

computational effort of sequential decoding was studied by analysis and simulation. We found

that codes with a rapidly growing column distance function result in better computational

performance and that the initial portion of the column distance function (i.e., the distance

profile) plays a more important role than its latter part.

Trellis codes with Optimum Distance Profiles (ODP) and Optimum Free Distances (OFD)

for 8-PSK and 16-QAM modulation with constraint lengths up to 15 have been constructed

for use with sequential decoding. Although they provide a better trade-off between the free

distance and the distance profile than the best known trellis codes constructed for the VA,



neither the ODP nor the OFD trellis codesprovide the best trade-off, i.e., the distanceprofiles
of someOFD trellis codesaremuchworsethan the ODP codes,and the freedistancesof some
ODP trellis codesare much worsethan the OFD codes.This is quite different from the case
with convolutional codes,wherethe best freedistance codesalsohave gooddistanceprofiles.

Thus, we have constructed trellis codeswhich are neither optimum free distancenor op-
timum distance profile. We call the new codesRobustly Good Codes(RGC). Given that a
robustly good trellis code of constraint length v has beer found, the approach used to find a

constraint length v + 1 robustly good trellis code is to hnd the code that improves the free

distance or the distance profile of the constraint length v code, with priority given to improv-

ing the free distance. In other words, we try to find a longer code which has a free distance

or a distance profile superior to or identical to the shorter one. The new codes achieve nearly

the same free distances as the OFD codes and nearly the same distance profiles as the ODP

codes. Simulation results show that the new codes outperform the best known trellis codes

when sequential decoding is used.

4) On the Separability of Shaping and Coding

In a coded modulation system, a shaping gain can be achieved by using either higher

dimensional spherical constellations or appropriately designed shaping codes. However, it has

been recognized that it is advantageous to pursue shaping gain directly via a shaping code

rather then indirectly via shaping a higher dimensional constellation. Existing schemes that

employ shaping and coding utilize one or more normal codes and a shaping code separately.

Forney [1 " asserts that shaping and coding are separable and their gains additive at high

data rates _spectral efficiencies). However, Pottle and Calderbank [15] recently argued that

shaping and coding may not be separable in the limit of large code complexity. We have

investigated the separability of shaping and coding in a coded/shaped system operating at

practical spectral efficiencies (< 8 bits per two dimensional signal). We have shown in this case

that coding gain and shaping gain in a separated system are not additive. We have also shown

that a separated coded/shaped system cannot achieve Shannon's bound on performance. A

new cascade structure for combined coding and shaping has been proposed. Although it may

be possible to achieve Shannon's bound using this structure, the design of a shaping scheme

for this structure remains an open problem.
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EFFICIENT SEQUENTIAL DECODING OF TRELLIS CODES

Abstract

by

Fu-QuanWang

The application of sequential decoding to trellis codes is studied. It is shown that

sequential decoding is a good alternative to Viterbi decoding and the results conform

closely to experience with convolutional codes.

An erasurefree sequential decoding algorithm is introduced. Analysis and simu-

lation show that significant coding gains over Viterbi decoding can be achieved with

much less computational effort using the new algorithm.

Trellis codes for 8-PSK and 16-QAM modulation with optimum distance profile

and optimum free distance are constructed. The design criteria for trellis codes with

sequential decoding are examined. A new code construction algorithm is proposed to

construct robustly good trellis codes for use with sequential decoding. Trellis codes

with asymptotic coding gains up to 6.66 dB are obtained.

Probabilistic construction algorithms are investigated for constructing good large

constraint length trellis codes that can achieve the channel cut-off rate at a bit error

rate of 10 -5 - 10 -6. Codes for 8-PSK and 16-QAM modulations with constraint

lengths u up to 20 are obtained. Simulation results show that the codes can achieve

the cut off rate bound at a bit error rate of 10 -s - 10-6 which correspond to 5.3 -6.6

dB real coding gains over uncoded systems.

Relationship between shaping and coding is studied and the separability of shaping

and coding in a coded/shaped modulation system is examined.
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1

INTRODUCTION

It has been predicted that wireline as well as wireless communications will be fully

digital by the end of this century[75]. Digital communications provides excellent

reproduction of the source signals with the greatest efficiency of transmission band-

width and power by using source and channel coding. Source coding reduces the

transmission rate for a given degree of fidelity [1, 30]. Channel coding can reduce

the Signal-to-Noise Ratio (SNR) and bandwidth requirements for a given degree of

reliability [9, 46, 70]. In this dissertation, we will study the decoding and construction

of a class of channel codes.

The reliability of a digital communication system is usually measured by the

bit error rate Pb which is defined as the total number of error bits over the total

number of transmitted information bits. The power efficiency is reflected by the SNR

per bit and the bandwidth efficiency is measured by the number of bits that can be

transmitted by a two dimensional signal. Many efforts[9, 46] have been undertaken to

achieve large power efficiency using coding for power limited channels at the expense

of bandwidth. However, the application of these codes to bandwidth limited channels

is not successful. It is the work of Ungerboeck[70] that showed how both power

and bandwidth efficiencies can be achieved for bandwidth limited channels. The

Ungerboeck codes are usually called Trellis Coded Modulation (TCM) which is a



subclassof the so called trellis codes.

Usually the Viterbi decoding algorithm[73] , which is optimum in the senseof

being maximum likelihood, is used to decodetrellis codes. One drawbackof the

Viterbi algorithm is the exponential growth of its computational effort with the code

constraint length. To achieve larger coding gains, alternative decoding algorithms

must be explored. In this dissertation, we investigate the application of sequential

decoding to trellis codes and the construction of trellis codes for use with sequential

decoding.

1.1 Digital Communication Systems

A typical digital communication system is depicted in Figure 1.1. The source could

source ] s°urce 1 x I channelencoder "_ cncodcr
y . ' mapper

- modulator)

channel

Idestination _- [ sourcedecoder

^
X

channel [ ^
Y

decoder demodulator ]¢

Figure 1.1: Block diagram of a digital communication system

either be a person or a machine that generates a sequence of messages to be com-

municated to the receiving terminal. The output message of the source could either

m



be continuous signals or a sequence of discrete symbols. The amount of information

generated by the source can be measured by the entropy of the signal set for a discrete

source or the rate distortion function for a continuous source [28].

The source encoder transforms the output of source into a sequence of binary digits

(bits) called information sequence x. The encoder is designed such that the minimum

number of bits is required to represent the source output for a discrete source. This

can be accomplished using entropy coding algorithms (encoder) for a discrete source.

For a continuous source, the encoder is designed such that the minimum number of

bits required to represent the source output with a predetermined distortion (fidelity)

is achieved. Theory and practical techniques for such transformations have been well

developed [1, 30]. Generally speaking, the source encoder tries to represent the source

output as economically as possible.

The channel encoder transforms the information sequence x into a code sequence

y. The code sequence y is then mapped into a sequence of modulated signals that

are suitable for transmission in physical channels.

To transmit n bits/T (T is the modulation time period), 2" distinctive functions

{si(t),i = 0, 1,-..,2" - 1}, which are suitable for transmission in physical channels,

are needed. A vector of n bits selects one of the functions {si(t)} at modulation time

1T. Using Gram-Schmidt orthogonalization procedure[891, {s_(t)} can be expressed

as N-dimensional vectors {a',i = 0,1,...,2 n- 1} (N _< 2n). The receiver error

probability is determined by {ai}, i.e., only the vectors {a _} are important. {a i}

is called the constellation of the modulation scheme, which can be displayed in a

R N Euclidean space. In digital communication systems, two dimensional signals are

usually used. Some typical constellations are shown in Figure 1.2.

Traditionally, the channel encoder is designed such that the minimum Hamming

distance among the code sequences y's, which is called the free Hamming distance of



BPSK QPSK

8-PSK

• • •

• • •

16-QAM

Figure 1.2: Typical modulation constellations

the code for convolutional codes, are maximized. The minimum Euclidean distance

among the sequence a is equivalent to the minimum Hamming distance among the

code sequences y if and only if BPSK or (Gray mapped) QPSK modulation is used.

We define the number of information bits that can be transmitted per modulation time

period as the spectral efficiency. For uncoded BPSK and QPSK, spectral efficiencies
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of 1 bit/T and 2 bits/T can be achieved, respectively. However,when coding is

used,someredundant bits are introduced in y. Thus it is impossiblefor the digital

communication systemsusing traditional codesto achievea spectral efficiencyof 2

bits/T or larger. When the channelis bandlimited, wewish to achievebetter spectral

(bandwidth) efficiency. But, for other modulation constellations, large Hamming

distance among the codesequencesy doesnot necessarillyresult in large Euclidean

distance among the modulated sequencea. Thus, it is desirable to optimize the

Euclideandistanceof the codesequencedirectly. The designof codesthat havelarge

Euclidean distanceand the application of sequentialdecodingto thesecodesare the

subject of this dissertation.

The modulated signalsor the output of the trellis encoderare then transmitted

through a physical channeland is corrupted by the noise. The demodulator acts as

an optimum receiverwhich usually includesa matchedfilter or a correlation detector

followed by a sampling switch. The output of the matched filter or a correlation

detector is sampled at time lT. The resulted signal z_ is a discrete symbol. The

optimum receiver (demodulator) is designed such that the signal to noise ratio is

maximized.

The channel decoder transforms a sequence of real numbers z or its quantized

version _r into a sequence of binary digits _ which is the estimate of x. The number

of the positions where 5c and x differ are the number of bit errors made by the

communication system. The number of errors divided by the total number of bits

for the sequence x is defined as the Bit Error Rate (BER) of the system. BER is a

very important measure of the quality of a digital communication system. Obviously,

an optimum decoder is the one that minimizes the BER. BER is related to the free

Euclidean distance of the code and the channel signal to noise ratio. This will be

discussed in detail later in the dissertation.



The source decoder transforms the sequence_ into an estimate of the source

output and deli :er this estimate to the destination.

1.2 The Capacity and Cut-off Rate

mensional Modulation Channels

of Two Di-

The trellis coded communication system model considered in this dissertation is de-

picted in Figure 1.3. The information sequence x from the source is divided into

x k
1

' = [ rate k/k+ 1

lconvolutional encoder

mapping

a I = M(Yl)

al _ Zl

x } Wl

= decoder

^k
x l

I
^I
x I

Figure 1.3: Block diagram of a trellis coded digital communication system

k subsequences and fed into a rate k/k + 1 convolutional encoder whose outputs

are then mapped into signals suitable for transmission over a physical channel. The

combination of the convolutional encoder and the signal mapper is called the trellis

encoder.

Suppose that the channel input signal at at modulation time I is taken from a

collection of signals {ai, i = 0, 1,... ,K-I} with probability pi = P{a_ = a _} (i=0,1,

• .., K-l), where a i is represented as a point in a two dimensional constellation (such

as PSK or QAM) and K is the number of points in the constellation. Actually, the



a i, for i = 0, 1, • • •, K-I, are K distinct continuous time functions of duration T. They

are usually sine wave pulses with different amplitudes and/or phases. However, we

can represent them as two dimensional points in a signal constellation[Sg] and thus

regard them as discrete symbols. The average signal energy is then given by

K-I

Es = P,lla'll, (1.1)
i=O

where Ilxtl denotes the energy of signal z. If p, = 1/K for (i=0,1, ..., K-l), we say

that equiprobable signaling is used. Otherwise, we say that nonequiprobable signaling

is used.

The modulated signal sequence is then transmitted through a physical channel

and is corrupted by noise. Let wt be a bandlimited Additive White Gaussian Noise

(AWGN) sample at time l with zero mean and variance a 2 per dimension. Assume

that distortionless transmission, perfect timing, and carrier-phase synchronization are

available. Then, the channel output (demodulated signal) at the receiver at time I is

zt = at + wt (1.2)

and has probability density:

1 -]zt- ail2}. (1.3)
p{zda, = a i } = 2--_-fia2ezp{ 2a_

The average SNR per symbol is defined as

SNR = Es/2a 2. (1.4)

It is well known[89] that there are two parameters that determine the funda-

mental performance limits for digital communications: the channel capacity C and

the channel cut-off rate Ro. Shannon[68] proved that reliable communication can be

achieved through coding when the transmission rate is less than the channel capacity



C. The channel capacity for a bandlimited AWGN channelwith ideal signaling and

an averageinput energyconstraint Es is given by[68]

Es) (1.5)C = log 2 1 + _00

in bits per signal duration T (bit/T). But C may only be achieved with Gaussian

distributed input signals.

The channel capacity for a discrete-input continuous-output bandlimited AWGN

channel with equiprobable signaling can be derived as follows. Assume that the input

signals are independent random variables and the channel is memoryless. Then,

extension of the formula for the capacity of a discrete memoryless channel [9] to the

case of continuous-output yields

C" = m,...mK-,max,= Pi oo p(z,/a, -- ai)log_ i,_,_.=_o, pjp(zl/at = aj )

(1.6)

For an equiprobable signaling system, we have p_ = 1/K (i = 0, 1,... ,K - 1), so the

maximization in (1.6) can be omited. By doing some further calculations, we obtain

the channel capacity[70]:

1 K-1 { K-I [ ]z_ai]2_lz_akl2]}C'= log2g-I'( k=0_ Zz log 2 ,=o_-_exp - 2a 2 . (1.7)

where Ez denotes the expectation of z. C" can be evaluated by Monte Carlo tech-

niques for a given Signal to Noise Ratio (SNR). From (1.7), we see that C" is a function

of the constellation points {£}. Thus, the SNR's required to achieve the same spec-

tral efficiency (number of information bits/T) will differ for different constellations.

On the other hand, (1.5) shows that C is only a function of SNR.

From (1.7), we may infer that some constellations are more power efficient than

some other constellations. For two dimensional constellations, QAM or its more circu-

8



lar variations aremostefficient, ttowever,evenin thesecases,moreenergyis required

than that promisedby (1.5) to achievethe samespectralefficiencywhenconventional

coding (equiprobablesignaling)is applied. Forexample,Table 1.1showsthe required

Table 1.1: The required SNR to achieveC and C"

NR

5 6

256-QAM 5.1 9.0 12.6 16.0 19.2 22.5

128-QAM 5.1 9.0 12.6 16.0 19.3 -

64-QAM 5.1 9.1 12.7 16.2 - -

32-QAM 5.1 9.1 12.8 - - -

16-QAM 5.2 9.3 - - - -

8-QAM 5.4 .....

Ideal 4.8 8.5 11.8 14.9 18.0 21.0

SNR's to achieve the same spectral efficiencies of C = 2,..., 7 for ideal (nonequiprob-

able signaling) and C" = 2,..., 7 for QAM modulation with equiprobable signaling.

It is noted that the required SNR for C" is significantly larger than the required SNR

for the same spectral efficiency of C even if a very large constellation is used. The

difference in the SNR's needed to achieve the same C" as C can be viewed as the

maximum possible shaping gain with respect to the channel capacity.



A shaping gain can be achieved by using either higher dimensional spherical

constellations[5, 22, 27] or appropriately designed shaping codes [3, 4, 24, 48]. How-

ever, it has been recognized [4, 24] that it is advantageous to pursue shaping gain

directly via a shaping code rather than indirectly via shaping a higher dimensional

constellation. The objective of shaping coding is to minimize the average signal power

by achieving a nonuniform Ganssian-like input distribution on an expanded constel-

lation. A more conventional shaping gain definition is given by Forney and Wei[27].

In their definition, the shaping gain of an N-dimensional region R is the reduction

in average power (per two dimensions) required by a constellation bounded by R

compared to that which could be required by a constellation bounded by an N-cube

of the same volume V(R), i.e.,

where

%(R) = [12G(R)]-', (1.8)

C(R)= fit Ilrll
NV(R),+21N' (1.9)

is the normalized second moment of region R. It has been shown that the shaping

gain asymptotically approaches 7re/6 (1.53 dB) as N --, co [26, 27]. This limit is

called the ultimate shaping gain.

Channel capacity may only be achieved with infinite coding complexity. Channel

cut-off rate Ro is the maximum rate at which the average number of computations for

sequential decoding is bounded. Thus, Ro is regarded as the maximum rate for which

reliable communication can be achieved with reasonable complexity by many authors

[52, 90]. The cut-off rate for a bandlimited AWGN channel with ideal signaling and

an average input energy constraint Es is given by[28]

10



Ro = (log2e) 1+ 2-_o- 1-4- k2Noff J "4-log 2 1+ 1+ 2) bit/T.

(1.10)

But R0 may only be achieved with Gaussian distributed input signals.

The cut-off rate for a discrete-input continuous-output bandlimited AWGN chan-

nel with equiprobable signaling can be derived using a similar approach as the capacity

[70]. Extension of the formula for the cut-off rate of a discrete memoryless channel

[9] to the case of continuous-valued outputs yields

{j::[1 t,___1_ de biUT. (1.11)
/_ = - l°g2 K k=0

Substituting (1.3) into (1.11) and doing some further calculations, we obtain the

cut-off rate R; as

g-1 (a,_a j)2+(%,_ a j)2
Pq= 21og K- log E (1.12)

( i=0 j=o 8a2 '

where a_ i and %i are the inphase and quadrature components of the two dimensional

signal a i.

In Figure 1.4, /_ is plotted as a function of SNR for some two dimensional con-

stellations. Ro is also plotted in Figure 1.4. Observe that a larger SNR is needed to

achieve the same P_ as Ro. The difference in the SNR's is caused by the different in-

put signal distributions just as in the case of channel capacities C ° and C. Ro is only

a function of the SNR, whereas P_ depends on the specific signal constellation. For

a given constellation, P_ can be achieved with proper coding. The difference in the

SNR's needed to achieve the sazne P,_ as Ro can be viewed as the maximum possible

shaping gain with respect to the cut-off rate. Table 1.2 shows the required SNR's

to achieve the same spectral efficiencies of Ro = 2,..., 7 for ideal (nonequiprobable

11
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Figure 1.4: Cut-off rate of bandlimited AWGN channels with two dimensional mod-

ulation

signaling) and /_ = 2,.-., 7 for QAM _,_dulation with equiprobable signaling. The

results in Tables 1.1 and 1.2 are very similar.

From Figure 1.4, we also see that doubling the number of channel signals achieves

almost all the coding gain (in terms of channel cut-off rate) that can be obtained by

signal set expansion. This is analogous to the case with channel capacity[70].

Finally, we list the maximum possible shaping gain with respect to channel capac-

12



Table 1.2: The required SNR to achieve Ro and/_

system_ SNR

2 4 6 7

256-QAM 7.3 11.1 14.5 17.8 20.9 24.1

128-QAM 7.3 11.1 14.5 17.8 21.0 -

64-QAM 7.3 11.1 14.5 17.9 - -

32-QAM 7.3 11.1 14.6 - - -

16-QAM 7.3 11.2 - - - -

8-QAM 7.4 .....

Ideal 6.8 10.3 13.5 16.6 19.7 22.7

ity C and channel cut-off rate Ro in Table 1.3. Note that no shaping gain is available

for PSK modulation since the signals in the constellation all have the same energy and

thus the average signal energy cannot be reduced with a nonequiprobable signaling.

1.3 Trellis Coded Modulation

Shannon[68] showed that there exist some coding schemes that can achieve the chan-

nel capacity and coding can be used to reduce the required signal energy to transmit

certain amount of information. The reduction in the signal energy of a coded system

13



Table 1.3: Maximum possible shaping gain

respect to_ ns

3 4 5 6 7

C 0.8 0.8 1.0 1.3 1.3 1.5

R 0 0.8 0.9 1.1 1.3 1.3 1.4

over an uncoded system is called the coding gain. Two fundamental problems in cod-

ing theory are then the construction of good codes and the design of efficient decoding

algorithms for the known codes to achieve the coding gains promised by the channel

capacity. Traditionally, block codes and convolutional codes are used to achieve the

coding gains. However, as we explained in Section 1.1, it is impossible for this kind of

coding schemes to achieve a spectral efficiency better than 2 bits/T. To achieve better

bandwidth efficiency, joint design of coding and modulation is necessary. The Trellis

Coded Modulation (TCM) scheme developed by Ungerboeck[70] is such a technique

that combines coding and modulation into one scheme to achieve larger bandwidth

efficiency. Another technique, which is called the multilevel coding scheme, was origi-

nally introduced by Imai and Hirakawa[36] and have been investigated intensively by

many others[41, 92]. TCM, which will be referred as trellis codes thereafter, and its

decoding wiU be studied in this dissertation.

The structure of the trellis codes considered in this dissertation is shown in Figure

1.5. To send k information bits/T, a 2 k+l point two-dimensional signal constellation

is used. The information sequence is divided into k subsequences x_ (i = 1,2,-.., k)

14
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Figure 1.5: Code structure of trellis codes

and fed into a rate R = k/(k + 1) convolutional encoder in systematic feedback form.

The encoded (k+l) bits Yt = (y_,"" ,y_,yO) are then mapped to a signal point in

the 2k+l point signal constellation. Once the mapping is chosen, the performance of

trellis codes is determined by the selection of the systematic feedback convolutional

code.

Using polynomial notation, code sequences y(D) of a systematic feedback code

can be generated by

where

y(D) = x(D)G(D), (1.13)

y(D) = (yk(D),... ,yl(D),y°(D)),

x(D) = (zk(D), ... ,x2(D),z'(D)),

(1.14)

(1.15)

15



and

G(D) =

1 0 ... 0 Hk(D)/H°(D)

0 1 ... 0 Hk-I(D)/H°(D)

: :

0 0 ... 1 H1(D)/H°(D)

(1.16)

y'(D) = yio + ylD + y_D 2 + ...... ,i = O, 1,...,k

x_D x_D 2 + ,i = 1,9,...,kz'(D) = z o + + ...... _

H3(D) = hJo+ h_D +... + h¢D_,j = O, 1,...,k.

(1.17)

(1.18)

(1.19)

G(D) is called the code generator matrix. H j ( j i ..= h0, ht, .,h_) are the parity-check

coefficients associated with the encoder output y_.

A general implementation of the systematic feedback codes described above is

shown in Figure 1.6. If H°(D) = 1 or 0, it results in a class of codes called systematic

feedforward codes[49]. All the codes constructed in this paper with a H°(D) # 1 or

# 0, i.e., we are only interested in systematic feedback codes since they achieve larger

free distances than systematic feedforward trellis codes. The number of memory

elements _, in the encoder is called the code constraint length.

Note that some input information bits (k + 1 to k) may be uncoded. In this

case, the corresponding Hi(D) (j = k + 1,..., k) are equal to zero. Encoders with

some uncoded bits simplify code construction and decoding complexity, but limit

the achievable free distance for larger constraint lengths. For some short constraint

lengths, however, encoders with uncoded bits give optimum free distance codes[70].

The uncoded bits introduce parallel transitions in the code trellis. For k = 1, parallel

transitions limit the potential asymptotic coding gain to 3.0 dB, while for/¢ = 2 and

_: = 3 the potential coding gains are limited to 6.0 dB and 9.0 dB, respectively.

16



x_

x_

x_ ;1
_;o o_

I
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The output y_ - {y_,..., y_,y(_} is fed into a modulator which transforms the

(k+l)-tuple into a two dimensional real number at. This one-to-one map is written

a,s

at = M(yt). (1.20)

The mapping rule called "mapping by set partitioning" by Ungerboeck[70] is used.

This mapping follows from successive partitioning of a constellation into subsets with

increasing minimum intra-distances between signals of these subsets.

Now, let us define some of the distance parameters which will be useful in the

discussion that follows.

Definition 1.1: The column distance function (CDF) of order i for a trellis code, d_,

is defined as

d_ = min d2[M(yt),M(Y_)l (1.21)
X_X e

where x and x' are two distinct information sequences and d2 [M(yt), M(y_)] is the

squared Euclidean distance between M(yt) and M(y_).

Ungerboeck [70] defined the Euclidean weights

w2(et) _ mind2[M(yt),M(yt _ et],

where et = [e_,-.-, el, e?] is an (k+ 1 )-bit error vector and the minimization is over all

Yt = [Y_, "" •, Y_, y_], and showed that there always exist a code sequence (Y0, Yl,"', Y,)

such that

i i

d 2 [M(yt),M(yt _et] = __, w2(et) (1.22)
1=0 1=0

The codes considered in this dissertation axe Ungerboeck codes sad thus satisfy

(1.22), which implies the so-called uniform distance property defined in [2]. The

18



significance of (1.22) is that the column distance function d_ can be calculated by

assuming that the all zero sequence is sent. [n light of (1.22), the column distance

function can also be expressed as

d_ = min w_(et) (1.23)
e_#O

i.e., the minimum weight among all the non-zero sequence.

Definition 1.2: d 2 = (_o, _,'", d_) is called the distance profile of a trellis code.

Definition 1.3". d2_m = _ is called the minimum distance of a trellis code.

Definition 1.3 follows the convention for convolutional codes[39]. The minimum

distance of a convolutional code determines the guaranteed error-correcting capability

when the code is decoded by a feedback decoder (threshold decoding) [50]. We notice

that _ is rather special in its own right even in the case of trellis codes since it can

and only can be determined by all the generator (parity-check) coefficients.

Definition I._: aO is called the free distance of the code.

It is seen that a trellis code is determined by its parity-check coefficients H j =

(h_,h_,...,h_) (j = O, 1,...,u). Code construction is to select HJ (j = O, 1,...,u)

such that some of the distance parameters defined above be optimized.

1.4 Viterbi Decoding and Sequential Decoding

For a given code, we want to have a decoding algorithm that can make as few errors

as possible. The Viterbi algorithm[73] is optimum in this sense when equiprobable

signaling is used. The Viterbi algorithm was originally introduced by Viterbi[73] to

decode convolutional codes. It was recognized to be a maximum likelihood decoding

algorithm by Omura[56] and Forney[18, 19]. Forney[17] also pointed out that the

Viterbi algorithm could be used to produce the maximum likelihood estimate of the

transmitted sequences over a channel with intersymbol interference. Recently, the
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Viterbi algorithm has been generalized to provide some kind of reliability information

about the decoded sequence by Hashimoto and many others [34, 35, 93].

Before discussing the application of Viterbi decoding and sequential decoding to

trellis codes, we describe various methods to represent trellis codes. We note that

there are certain number of memory elements in a trellis encoder and thus the encoder

can be regarded as a finite state machine. The code can then be described by a finite

state diagram with a total number of states 2" where v is the code constraint length.

For example, the state transition diagram of a constraint length r, = 2 trellis code for

8-PSK modulation taken from [70] can be shown as in Figure 1.7. The state diagram

6

S

Figure 1.7: State transition diagram for a rate 2/3, 4-state, trellis coded 8-PSK

modulation system

is a kind of graph. Omura[56] showed that the Viterbi algorithm was equivalent to a

dynamic programming solution to the problem of finding the shortest path through

a weighted graph. The distance properties of trellis codes can be analyzed using the

state transition diagram[95].

To explain the operations of the Viterbi algorithm, we can expand the 2 v state

diagram in the time unit and get a 2" state trellis diagram. For example, the state
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diagram of Figure 1.7 can be expandedinto a trellis diagram as shown in Figure

1.8. The trellis correspondsto a information sequenceof L = 5 branches and a one

o. 0,4 00_.___o, o,4 0,4 _: 0,4 o 0,4 o, 0,4 o

.o 'o/ o ',' o

Figure 1.8:

system

Trellis diagram for a rate 2/3, 4-state, trellis coded 8-PSK modulation

constraint length all-zero tail. It is noted that the trellis cannot return to all-zero

state. This is a common feature of convolutional codes in feedback form.

The Viterbi algorithm searches through the trellis and select one survivor path

associated with each state. Thus, the computational complexity of the Viterbi algo-

rithm is primarily determined by the number of states, which is 2 _ for a constraint

length u code. We define the operations that are required to select one survivor as

one computation. Thus, it requires about 2 _ computations to decode one branch. We

note that the number of computations required to decode one branch for a Viterbi

decoder grows exponentially with u.
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For codesin feedforward form, the trellis will mergeinto the all-zero state if a

one constraint length all-zero tail is added at the end of information sequence. In

this case,only one path survives at the end of decoding. However, for trellis codes

that are constructed in systematic feedback form, the trellis will not merge into the

all-zero state as shown in Figure 1.8 and in fact there still are 2" survivor paths when

the L + v branches are decoded. In this case, we may select the path that has the

best metric as the decoded path. Normally, this provides less error protection for

the information bits at the end of the sequence and thus more errors will be caused.

However, if L is very large, this effect is negligible.

Sequential decoding was shown to be a good alternative to the Viterbi algorithm

for convolutional codes. It was first suggested by Wozencraft [91] to decode convolu-

tional code. In I963, Fano [14] introduced a new version of sequential decoding, which

is now called the Fano algorithm. Several years later, Zigangirov [96] and Jelinek[38]

independently discovered another version of sequential decoding, which is called the

stack algorithm. A variety of variations have also been suggested [7, 32]

A sequential decoder can operate in two modes: block decoding and continuous

decoding. In the block decoding mode, each of the k information subsequences is

divided into blocks of finite length L. The encoding of each block starts from the all

zero (or some other known) state. Usually, a one constraint length tail of v all zero

(or some other predetermined) bits follows each information block to guarantees good

performance. Otherwise (L --, oo), the decoder is operated in a continuous decoding

mode.

There are 2 kL codewords of length n(L + v) for a rate k/n trellis code operating in

the block decoding mode with constraint length v and information sequence length

kL. In discussing sequential decoding, it is convenient to represent these codewords

as paths through a code tree containing L + v + 1 time units or levels. Every path in
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the tree is distinct from every other path. An example of the code tree is shown in

Figure 1.9 for a constraint length v = 3 (8-state) trellis code with 8-PSK modulation
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Figure 1.9: Code tree for a rate 2/3, 8-state, trellis coded 8-PSK modulation system

taken from [70], where L = 2.

A sequential decoder moves through a code tree. It moves along the correct path

in the tree as long as the metric of that path keeps increasing. This feature makes

it faster than a Viterbi decoder, which is a kind of exhaustive search through all the

paths regardless of their metrics. Actually, it has been shown that the computational
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effort of sequential decoding is independent of the code constraint length v[37, 67].

Thus, large constraint length codes can be used to achieve large coding gains using

sequential decoding. However, it is quite obvious that the computational effort of

sequential decoding depends on the received sequence. If the received sequence is

very close to the correct sequence, the decoder will easily follow through the correct

path in the code tree. Otherwise, it will encounter some difficulty. This makes the

computational effort of sequential decoding a random variable.

The error performance of sequential decoding, on the other hand, is not optimum,

but they are very close to the Viterbi algorithm. It has been shown by a random

coding approach that sequential decoding can perform almost as well as the Viterbi

algorithm[76, 94]. Thus, a slightly larger constraint length code using sequential

decoding will outperform a smaller constraint length code using Viterbi decoding

with no or little computational penalty.

Finally, we compare the performance of trellis codes using Viterbi decoding with

the channel capacity and cut-off rate bounds via simulation. Constraint length of

v = 6 trellis codes are used since we believe that a trellis code with v = 6 and Viterbi

decoding is commercially practical. First, a rate 2/3 Ungerboeck code of constraint

length v = 6 with 8-PSK modulation with Viterbi decoding is simulated. The results

along with the channel capacity and cut-off rate bounds are shown in Figure 1.10.

lit is observed that the code is about 1.4 dB away from the P,_ bound and about

3.1 dB away from the C" bound for 8-PSK modulation at a BER of 10 -s. Note

that the number of computations required to decode one branch is 64. In the rest of

the dissertation, we will show that more than one dB coding gain can be achieved

at a BER of 10 -5 with much less computational effort when sequential decoding is

used. We will also construct large constraint length trellis codes that can achieve the

channel cut-off rate bound for use with sequential decoding.
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Figure 1.10: Performance of a rate 2/3 trellis coded 8-PSK with v = 6

Similarly, in Figure 1.11, we compare the performance of a rate 3/4 Ungerboeck

code of constraint length u = 6 with 16-QAM modulation using Viterbi decoding with

the channel capacity and channel cut-off rate bounds. In Figure 1.11, the capacity C

and the cut-off rate Ro bounds at a spectral efficiency of 3 bits/T are also shown since

they are the bounds achievable when shaping coding is used for QAM modulations.

It is also seen that the code is about 1.5 dB away from the P_ and about 3.4 dB away

from the C" bound. The application of sequential decoding to trellis coded 16-QAM

and the construction of trellis codes with 16-QAM modulation for use with sequential

decoding will also be studied in this dissertation.
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Figure 1.11: Performance of a rate 2/3 trellis coded 16-QAM with v = 6

1.5 Overview of the Dissertation

This dissertation treats three aspects of trellis coding. Chapters 2 and 3 investigate

the application of sequential decoding and its modifications to trellis codes. In Chap-

ters 4 and 5, code construction Mgorithms are proposed and trellis codes for use with

sequential decoding are constructed. In Chapter 6, the relationship between shaping

and coding is explored.

Trellis codes can be implemented in systematic feedforward, systematic feedback,

and non-systematic feedforward forms. Only systematic feedback and non-systematic

feedforward encoders are capable of generating optimum free distance codes. In gen-
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eral, thereare manynon-systematicfeedforwardencoderswhich cangeneratea given

convolutional code. An encoderis minimal if it requires the fewestnumber of mem-

ory elementsneededto generatea code[16]. In order to find a minimal encoder,

it is alwayspossibleto convert a non-systematicfeedforwardencoder to an equiva-

lent systematic feedbackencoder[16,60]. The systematic feedbackencoderis unique,

minimal [16], and canneverbecatastrophic [54]. Also, rate k/(k+l) encodersin sys-

tematic feedbackform reducethe computer searchcomplexity in constructing trellis

codessince a singleparity checkpolynomial determinesa code in this form. Thus,

most trellis codesare constructed in systematic feedbackform. In Chapter 2, the

application of sequentialdecodingto rate k/(k+l) systematic feedbacktrellis codes

is investigated. The relationship betweenthe Fanometric and maximum likelihood

decodingis discussedand the Fanometric is derived. The Fanoalgorithm is briefly

reviewed. After the discussionsof the demodulator quantization, signal mapping in

the tail of a block, and the influenceof tail lengthon performance,simulation results

on the error performanceand computational effort for trellis codesusing sequential

decodingare presented.

Computational effort of sequentialdecodingis a random variable with a Paxeto

distribution. Although the undetectederrorprobability canbemadearbitrarily small,

somedata cannot be completely decodedand the probability of incomplete decod-

ing (erasure) is usuallyon the order of 10-2 to 10-3 [43]. Thus, the performanceof

sequentialdecodingis limited in the casewherea feedbackchannel is not available.

In Chapter 3, an erasurefreesequentialdecoding algorithm is introduced. Several

versionsof the algorithm can be obtained by choosingcertain parameters and se-

lecting a resynchronizationscheme.Thesecan be categorizedas block decodingor

continuous decoding,dependingon the resynchronizationscheme.The performance

of a typical block decodingschemeis analyzed. A generalresynchronizationscheme
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for continuous sequentialdecodingis presented. The performanceof continuousse-

quential decodingusingthis schemeis studied via simulation and the performanceof

both block decodingand continuousdecodingis comparedwith the VA.

Most of the trellis codesconstructed thus far havebeenfor usewith the Viterbi

algorithm[70, 72]. The asymptotic error performanceof the Viterbi algorithm[73]

is determined by the minimum free Euclidean distance of the code. Thus, the free

distance has been used as the main criterion in code construction for use with the

Viterbi algorithm[70, 72]. In Chapter 4, the influence of distance parameters on

computational effort of sequential decoding of trellis codes is studied and trellis codes

for use with sequential decoding are constructed. First, the influence of the column

distance function and distance profile of trellis codes on the computational effort of

sequential decoding is studied by analysis and simulation. Trellis codes with Optimum

Distance Profiles (ODP) and Optimum Free Distances (OFD) are then constructed

and the design criterion for trellis codes with sequential decoding is examined. A

new algorithm to construct robustly good trellis codes is presented. The new codes

obtained by this approach are compared with the ODP and the OFD codes as well as

the best known trellis codes in terms of free distance and distance profile. Simulation

results using sequential decoding are also presented to compare the performance of

the new codes with the best known codes.

Trellis codes constructed in Chapter 4 have optimum or nearly optimum distance

parameters for use with sequential decoding. They are obtained in an exhaustive

search with some rejection rules. Thus, it is impossible to construct trellis codes long

enough to exploit the computational advantage of sequential decoding. In Chapter

5, probabilistic construction algorithms are investigated for constructing good long

trellis codes that can achieve the channel cut-off rate at a Bit Error Rate (BER) of

10 -s - 10 -e. The algorithms are motivated by the random coding bound for trellis-
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type codes. First, results from random coding are reviewedand simulation results

for trellis codesarepresentedto illustrate how randomly chosencodesperform. Two

code construction algorithms are then proposed. The two construction algorithms

arecomparedand trellis codeswith 8-PSK and 16-QAM modulation areconstructed

by one of the proposedalgorithms. Thesecodesarecomparedwith the best known

codesfor short constraint lengths. New codesare decodedby the conventionalFano

algorithm and the erasurefreesequentialdecoding schemeproposedin Chapter 3.

Performanceis comparedwith uncodedsystemsand the cut-off rate bound.

A shapegain canbeachievedusingeither higherdimensionalsphericalconstellations[5,

22,27]or appropriately designedshapingcodes[3,4, 24,48]. The ultimate (potential)

shapinggain is 1.53dB. It hasbeenshownthat a large portion of this gain can be

achievedusing simpleshapingcode[4,24]. However,shapinggain is usuallymeasured

in a shapedonly systemby assumingthat shapingand codingareseparable.In Chap-

ter 6, the separability of shaping and coding in a coded/shapedmodulation system

is examinedin the context of the achievabilityof Shannon'sbound and additivity of

shapinggain and codinggain.
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2

SEQUENTIAL DECODING OF
TRELLIS CODES

The publication of Ungerboeck's seminal paper[70] on trellis coded modulation stim-

ulated wide interest in the construction of good trellis codes[5, 20, 21, 23, 26, 41, 49,

58, 59, 61, 72, 77, 80, 82, 86, 87, 88]. However, very few papers have addressed the

decoding problem [63, 78, 79, 82]. Most researchers assume that the Viterbi Algo-

rithm (VA)[73] is used for decoding and trellis codes are then constructed by hand or

by computer search to maximize the minimum free Euclidean distance and minimize

the number of nearest neighbors. However, since both the hardware complexity and

the computational effort of the VA increase exponentially with the constraint length

u, it is not practical to implement for large u and its performance is limited to moder-

ate bit error rates (BER's). To achieve better performance requires the use of larger

constraint lengths and suboptimum decoding.

It is well known that the computational effort and the hardware complexity of Se-

quential Decoding (SD) algorithms [7, 14, 32, 38, 45, 78, 79, 82, 91, 96] are essentially

independent of the constraint length u, so large u can be used and arbitrarily small

error probability can be obtained with tolerable complexity and decoding speed. In

this chapter, the application of sequential decoding to trellis codes is investigated.

An input buffer is needed in a sequential decoder since its computational effort is
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a random variable. An infinite buffer is assumed throughout this chapter, i.e., com-

plete decoding is allowed. Sequential decoding with a finite buffer will be discussed

in Chapter 3. In Section 2.1, the relationship between the Fano metric and maximum

likelihood decoding is explored. The Fano metric for discrete input and continuous

output AWGN channel is derived. In Section 2.2, the Fano algorithm is briefly re-

viewed. In Section 2.3, several quantization schemes are studied via simulation for

PSK constellations. In Section 2.4, a simple method to increase the distance of trellis

codes at the tail is presented. In Section 2.5, the influence of the tail on performance

is studied. In Section 2.6, error performance of trellis codes using sequential decod-

ing is studied via simulation. In Section 2.7, simulation results for computational

distribution of sequential decoding of trellis codes are presented.

2.1 Maximum Likelihood Decoding and the Fano

Metric

Referring to Figure 1.1, we see that in a trellis coded modulation system with an

AWGN channel, the information sequence x is transformed into a modulated signal

sequence a. It is the sequence a that is transmitted through the channel. The decoder

then must produce an estimate _ of the modulated sequence a based on the received

sequence z which is corrupted by an additive white Gaussian noise. From _, we can get

an estimate _ of the information sequence x since there is a ont-to-one correspondance

between the information sequence x and the modulated signal sequence a. Clearly,

= x if and only if _ = a. Given that z is received, the conditional error probability

of the decoder is defined as

P(EIz ) = P(_ # alz). (2.1)
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The error probability of the decoder is then given by

P(E) = / P(Elz)P(z)dz. (2.2)

P(z) is independent of the decoder since z is produced prior to decoding. Hence, an

optimum decoder must minimize P(EIz) = P(_. # alz) to minimize the error proba-

bility. Since minimizing P(fi. # alz) is equivalent to maximizing P(_ = alz), P(EIz)

is minimized for a given z by choosing _ as the code sequence a which maximizes

P(zJa)P(a)
P(alz ) = , (2.3)

P(z)

that is, _ is chosen as the most likely modulated signal sequence given that z is re-

ceived. If all information sequences, and hence all the modulated signal sequences axe

used with equal probability, maximizing (2.3) is equivalent to maximizing P(zla ). If

the information bits from the source are of equal probability, the resulted information

sequences of the same length will have the same probability. Thus, for a conventional

coded system (without shaping), the signal sequence will also be of equal probability.

A discrete channel is said to be memoryless if the received signal depends only on

the corresponding transmitted signal. For a discrete memoryless channel (DMC), we

have

P(zla) = 1"IP(zlJat) (2.4)
l

according to the definition. A decoder that chooses an estimate to maximize (2.4)

is called a maximum likelihood decoder. The strategy for choosing an estimated

code sequence to maximize (2.4) is called the maximum likelihood decoding rule.

Since log x is a monotone increasing function of x, maximizing (2.4) is equivalent to

maximizing the log-likelihood function
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logP(zla) - ]_'_log P(ztlat). (2.5)
1

We call the log-likelihood function the log-likelihood metric in a decoding algorithm.

Obviously, the log-likelihood metric is optimum for the comparison of the sequences

with the same length. Using (1.3) and (2.5), we obtain the log-likelihood metric for

an AWGN channel

log P(zta) = _ -alzt - a,I 2 +/3, (2.6)
1

where c_ and /3 are constants independent of zl and at. Thus, for trellis codes on

an AWGN channel, a maximum likelihood decoder chooses an estimate to minimize

the Euclidean distance between the received sequence and the estimated sequence.

In the Viterbi algorithm, the sequences (partial paths) being compared are always

of the same length and thus the log-likelihood metric, or equivalently, the Euclidean

distance, can be used as the metric. It has been shown [18, 19] that the Viterbi

algorithm can always find an estimated sequence a that maximizes log P(zla ) for a

given z if the log-likelihood metric is used.

We have shown above that the log-likelihood metric can be used to minimize the

error probability in a decoder where code sequences of the same length are compared,

such as the Viterbi algorithm. However, sequential decoding always involves the

comparison of code sequences of different lengths in the decoding process. Since

P(ztla_) is always less than one, log P(zllat) = -_lzl - atl 2 +/3 is always negative.

Thus, if two sequences of different lengths are compared, the shorter one will be

favored since it has a larger metric. Similar conclusion can be drawn if the Euclidean

distance is used as the metric since the shorter path has a smaller distance. The

log-likelihood metric is then no longer optimum in comparison of different length

sequences.
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In order to derive an optimum metric for sequential decoding, we need to determine

P(aiz) or equivalently P(a, z). Here a may not have the same length as the received

sequence z since in quential decoding the paths being compared are usually with

different lengths provided the same received sequence z is known. Now let us derive

P(a, z) and then the optimum metric for comparison of code sequences of different

lengths using a similar approach to Massey's[51].

Consider a variable length code {a_, a2, • • •, aM} whose code lengths are {nl, nx, .- •, nM}.

The message m (1 < m < M), having probability P,,,, selects the codeword a,_ =

[a_, a_',..., a_,,]. We add a "random tail" t= = [t], t2,..', tN-,,,] to form the input

codeword

c = [c,,c2,"',CN] = [am, tra] (2.7)

for transmission over the discrete memoryless AWGN channel. Here N = max(n1, n_,. • •, riM)

is the maximum codeword length. We assume that t,,, axe selected independently of

a_, and that the signals in t,,, is selected independently according to a probability

measure Q() over the channel input signal points in the modulation constellation, i.e.,

P(tralara) = P(tra)= l'I Q(tk). (2.8)
k=l

Let z = [z_, z2, . " , ZN] be the received signal sequence corresponding to e = [c_, c2,..., CN].

We have

T1, Ill t g_n_

P(zle)=HP(z, laT') l'I P(z...+_lt_), (2.9)
l=l j---I

where P(I) denotes the channel transition probability. For a continuous-valued output

channel, we may write

P(zalal) = mzt x p{z_lal}, (2.xo)
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where p{ztlat} is the transition probability density function as defined in (1.3). The

joint probability of sending message m, adding the tail t_, and receiving z can be

written as

P(m, tm, z) = PmP(tmlam)P(zlamtm)

nm N-nm N-nm

= P.;l"IP(ztla7 ') _I Q(tk) 1"I P(z.,_+JltJ)"
I=1 k=l j=l

Note that there is a one-to-one correspondence between aM and m.

all possible random tail, we obtain

(2.11)

Summing over

where

P(am, Z) = P(m,z)

rtrn N-nrtl

= P_ 1-IP(z, la?) 1-I Po(z,_+#). (2.12)
I=1 j=l

Po(z_) = __, P(ztltk)Q(tD (2.13)
tk

is the probability measure induced on the channel output signals when the channel

inputs are used according to Q().

Now according to the maximum likelihood decoding rule, we have to maximize

P(m,z)/I-IN1 Po(zt). Taking logarithm, we obtain

""[ P(ztta'_)+ 1 log P,,;] (2.14)M(a.,z) = log Po(z,) n-Z
/=1

which is the metric to be maximized by the optimum decoder. By knowing that a

code sequence a corresponds to a message m, we may drop m in the code sequence

a,_ and obtain
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"'[ P(ztl.t) 1 ]M(a,z) = _ log Po(z,) + --logP_ . (2.15)
1=1 nm

M(a, z) is called the Fano metric. A variation of (2.15} was first suggested heuris-

tically by Fano[14] for decoding convolutional codes. The above analysis shows that

optimum performance in the sense of minimizing error probability can be achieved

when the Fano metric is applied in comparison of variable length sequences.

In order to derive a specific expression of the Fano metric for trellis codes, we

define the branch Fano metric as

1
Ms(at, zl) = log P(ztlal------_)+ m log Pro. (2.16)

Po(zl)

Assume that {al, a2,..., aM} represent all the paths in the code tree that has been

explored up to the present by a sequential decoder. (An example of a code tree for

a trellis code is shown in Figure 1.9.) Su; ?ose that the channel input signals are

taken from a collection of signals {a °, al, ... , a K-1 } with probability Pi = P(al = a i)

(i = 0,1,...,K - 1). We then have

Po(z,)
K-1

= p,P(ztla')
i=O

K-1

--" Az_ x _, plplztla _}
i=0

(2.17)

where p{ztla i} is the channel transition probability density function. Assume that

the signals in the collection are used with equal probability, i.e., pi = 1/K for i =

O, 1,..., K - 1. Next assuming that the information bits are independent and equally

likely to be O's or l's, we then have the a priori probability that the encoder followed

path am
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p,,, = 2-_'_-' (2.18)

for a rate k/n code. Substituting (2.10), (2.17), and (2.18) into (2.16) and noting

that K = 2" and p_ = 1/K, we obtain

Ms(a_,zj)
Kp{ztlat} - k

= l°g2 h-z
E,=0 p {z,la'}

exp (-Iz, - at[ _/2a 2)

= log_ E,%' e×p(-Iz,- a,p/2_2)
+ n(1 - R) (2.19)

where R = k/n is the code rate. It is seen that the Fano metric is determined by the

received signal zl and the hypothetical signal al.

For a continuous output channel, z_ can be any point in two dimensional Euclidean

space. In practice, zt may be quantized into one of a finite number of values z_J),j =

1, 2,.. •, J. We denote this as zt --* z__). There are also many other points that may

be quantized into z_ j). We denote the set of these points as

S_J)= {z, lz,---, z_2}, j = 1,2,...,J. (2.20)

S_ j) is called the j-th decision region at time I. For memoryless channels, the decision

regions are independent of time, i.e., S_ j} = S (j) for all I. Thus, for quantized outputs,

p{z_lat } and p{ztla i} in (2.19) are replaced by

and

P{SO)Ia'} =/s*,_ p{xla,}dz (2.21)

P{SO)lai} =/so_

respectively, when zt --+ z_j}.
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2.2 The Fano Algorithm

A variety of tree searching algorithms fall into the general category of sequential

decoding. Among these, the two most popular algorithms are the stack algorithm

(Z - J algorithm)[38, 96] and the Fano algorithm [14]. The stack algorithm uses a

stack to store the examined paths. The path with the largest metric is placed in the

top of the stack and other paths are stored in decreasing order of metrics. The stack

algorithm extends the top path in the stack, by adding its 2 k successors and deleting

the top path for a rate k/n code. The paths in stack are then rearranged in oder

of decreasing metrics. The decoding stops when the top path reaches the end of the

,=ode tree. There are 2 kL codewords for a rate k/n code and information sequence of

kL. Thus, if the stack depth is smaller than 2 kL, the stack may overflow. In practice,

the stack depth may always be much smaller than 2 kL which is very large even for

a moderate L. The Multiple Stack Algorithm of Chevillat and Costello[8] attempts

to solve the stack overflow problem. On the other hand, because it does not require

any storage, the Fano algorithm does not have a stack overflow problem. In order to

insure extending the path with the best metric (the top path), the stack algorithm

requires a large effort to continually re-order the stack. This problem can be partially

solved by using the stack bucket algorithm, but the Fano algorithm still decodes faster

than the stack algorithm for moderate rates [29]. Thus the FA is preferred in most

practical implementations [25, 43].

Fano algorithm decoder moves forward or backward from node to node in the

code tree depending on whether the cumulative Fano metric at the current node Me

is larger or smaller than some threshold T. T is increased or decreased in steps of

some, ,propriate value A called the threshold increment. Suppose that the decoder is

at some node of level l and the cumulative Fano metric is My(l). For a rate R = k/n

trellis code, there are 2 k successors to this node. The decoder computes the 2 k branch
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Fanometrics correspondingto the 2 _ successors MB(i(l))(i(l) = 1,2,..., 2 k) in order

of decreasing values. Then, it attempts to move forward to level l + 1 along an

untried branch with the largest metric. The cumulative metric at next node is then

Mc(l+ 1) = Me(l) + MB(i(l)) where MB(i(l)) is the largest metric among the untried

branches. If Mc(l + 1) is larger than or equal to T, the decoder moves to the node

of level l+ 1 and T is increased to the largest possible value not exceeding Mc(l + 1)

in steps of A. Then, the decoder proceeds at level l + 1 as at level I. If Mc(l + 1)

is smaller than T, the decoder moves back to the node of level l - 1. If Mc(l - 1)

is larger than T, the decoder attempts to move forward along those untried branches

again. If all the branches stemming from node of level I - 1 were tried, the decoder

moves back to the node of level l - 2. The decoder will move forward and backward

in this manner until it is forced back to a node for which the value of Mc is smaller

than the current threshold T.

When the decoder is forced back to a node for which Mc is smaller than the

current threshold, all the paths stemming from this node must contain at least one

node for which the metric falls below T. The situation may arise because of a mistake

at that node or a preceding node. It may also be caused by the severe channel noise.

No matter what, the threshold must be lowered by A to allow the decoder to proceed.

After the threshold is reduced, the decoder tries again to move forward. This leads

to the decoder to retrace all the previously explored nodes. However, the threshold

must not be increased during the process until an unexplored node is reached. Oth-

erwise, the decoder would keep retracing the same path over and over again.

A flowchart of the Fano algorithm is shown in Figure 2.1. The binary variable F is

used to control a gate that allows or prevents the threshold from increasing. If F = 0,

the threshold can be increased at appropriate node. Otherwise, it is prohibited from

increasing. Me(l) is the cumulative Fano metric at the node of level 1. i(l) is a counter
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Figure 2.1: A flowchart of the Fano Algorithm
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that corresponds to the i(1)-th largest Fano metric of the 2 k branches stemming from

the node of level I. MB(i(l)) is the z(/)-th largest branch Fano metric among all the 2 k

branches, v is the code constraint length and L is the length of information sequence.

The flowchart is self-explanatory. Decoding starts at the original node of level

I = 0 with the cumulative metric Me(1) = 0, the threshold T = 0, F = 0, and

i(l) = 1. Then, the decoder finds out the i(l)-th largest branch metric and get the

new cumulative metric Mc(l + 1) by adding to the metric of the previous level. If the

metric Me(l+ 1) is less than the threshold T, the decoder moves back to node of level

l - 1. If the metric at this node is smaller than the current threshold, the decoder

decreases the threshold bv a value of A and proceeds from this node. Otherwise.

it attempts to move along the branch with the next largest metric. If the metric

Me(l + 1) is larger than or equal to the threshold, it moves to the node of level l + 1

and adjust the threshold if the node has never been visited before. If the new node is

the terminal node, decoding stops. Otherwise, decoder proceeds from the new node.

An important feature of the Fano algorithm is that only one path must be stored

during the decoding process. This makes the Fano algorithm attractive for practical

implementation. Since some nodes may be visited more than once and the number

of node visits depends on how severely the signals around this node are corrupted,

the number of node visits (computations) required to decode a branch is a random

variable. This implies that the computational distribution is an important factor in

assessing the performance of a sequential decoder.

2.3 Demodulator Quantization

The received signal from the channel (demodulator output) z_ can be any two dimen-

sional point in Euclidean space. Since the decoder is digital, zl must be converted

into digital form to be stored and processed. This process is called quantization.
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The designof optimal quantizershasbeenstudied in [44, 52, 57, 90]. For M-sty

modulation, the demodulator output is quantizedinto oneof J > M levels. If J = M,

the quantizer is said to make hard-decisions. If J > M, the quantization is called

soft decision. For an equally likely signal set, the nearest neighbor decision rule that

assigns the demodulator output to the closest of the M signal points is optimal in the

sense of minimizing the error probability for hard decision quantization. In general,

it is very difficult to analytically determine the optimum decision regions when the

number of quantization levels J > M.

Lee [44] established a necessary condition for the boundaries of an optimal J-level

quantizer given an arbitrary probability density function relating channel inputs and

outputs. Parsons and Wilson[57] showed that the decision regions as shown in Figure

2.2 (a) satisfy Lee's necessary condition for PSK modulations. They further argued

that such a quantizer is optimal. However, optimal quantizers for PSK modulations

with J's other than M and 2M may only be obtained using design algorithms [44,

52, 90]. Figure 2.2 (b) shows another quantizer for 8-PSK modulation proposed in

[59] with J = 32 levels. This so-called dartboard quantization scheme is obviously

not optimum.

Decision regions for soft quantization of PSK modulation may also be rectangu-

lar, as shown in Figure 2.3 (a). We have simulated a variety of angular (including

the dartboard type of quantization) and rectangular quantization schemes for trellis

coded 8-PSK modulation with sequential decoding and found that angular quanti-

zation results in the best performance for J < 32 and that rectangular quantization

results in the best performance for J > 64. The performance of the soft decision

decoder using angular quantization improves with increasing J. But very little addi-

tional coding gain can be obtained when J exceeds 32. The rectangular quantization

performance also improves with J until J reaches 256. In Figure 2.4, we compare the

42 ,.



\

J

J
J

JJ

\

(a) 4-bit angular (b) 5-bit dartboard

(c) 5-bit angular
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BER performance of angular and rectangular quantization for trellis coded 8-PSK

modulation using a rate 2/3 Ungerboeck code with constraint length u = 4170] and

sequential decoding. The 4-bit angular scheme and the 5-bit angular scheme's deci-

sion regions are shown in Figure 2.2 (a) and (c). The 6-bit rectangular scheme uses

the decision regions shown in Figure 2.3 (a) and similar decision regions are used for

the 8-bit rectangular scheme. It is observed that about 0.4 dB more coding gain can

be achieved by using the 8-bit rectangular quantization scheme instead of the best

angular quantization scheme.

The quantization of QAM modulations is more complicated because of the irregu-

laxity of their boundaries, fIueristically, the rectangular quantization schemes shown

in Figure 2.3 (b) might be well suited for QAM modulations. It is easy to show

that optimal hard decision regions can be obtained using a rectangular quantization

scheme. However, for soft QAM modulation quantizers, it is very difficult to deter-
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Figure 2.4: Performance of different quantization schemes for trellis coded 8-PSK

mine the decision regions of optimal quantizers. Again, we may optimize the decision

regions using design algorithms [44, 52, 90].

2.4 Signal Mapping in the Tail of a Block

We assume that the encoder starts from the all-zero state. In the block decoding

mode, the encoder should also terminate in the all-zero state. A one constraint length

all-zero tail added to the information sequence can guarantee an all-zero terminal

state for feedforward encoders. It has been shown[40] that such a tail is required for

sequential decoding of feedforward convolutional codes to maintain good performance.
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Since trellis codes are usually constructed in systematic feedback form, the encoder

is not returned to the all-zero state by using an all zero tail. This implies that the

minimum ¢tistance among the encoded signal sequences may be less than the free

distance of the code if conventional mapping is used in the tail. We give an example

to illustrate this point.

Figure 2.5 shows the natural mapping of 8-PSK channel signals obtained by set

2 1 A0
h(_ =0.586

3 0

A] =2.0

7 A 2 =4.0

5 6

Figure 2.5: Natural mapping for 8-PSK modulation

partitioning[70], where Ao2, A_, and A_ are the minimum (squared) subset distances.

Note that the distances between 0 (a °) and 1 (a_), 0 (a °) and 2 (a2), and 0 (a °)

and 4 (a 4) are A2o = 0.586, A_ = 2, and A_ = 4, respectively. In Figure 2.6 (a),

three non-zero paths are shown for the Ungerboeck 8-state trellis code with 8-PSK

modulation. Paths 1, 2, and 3 represent paths of length L = 1 terminated by an all-

zero tail. The tail should provide error protection for the information bits at the end

of a block. The distance between path 0 and path 2 is A_ + A2o = 2.586. By checking

the distances of all 6 po6sible pairs of paths, we find that the distance between path 0

and path 2, i.e., 2.586, is the minimum distance among the four paths. This is much
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smaller than the codefree distanceof 4.586. This results in lesserror protection for

the information bits at the end of a block. Theseerrors dominate the BER at high

SNR, especially for short blocks. However,since there are only two signals in the

tail (0 and 1 with conventional mapping), we can change the mapping rule in the

tail to maximize the distance betweenthese two signals. For example,wecan map

the two possible encoderoutputs in the tail into 0 and 4, as shown in Figure 2.6

(b). This increases the minimum distance among the four paths to 6.0 and eliminates

the reduced error protection for the information bits at the end of a block. Finally,

we should point out that the loss of distance in the tail for conventional mapping

does not pose a serious problem for continuous decoding algorithms such .s Viterbi

decoding, since the information sequence is very long and thus the influence of the

tail is negligible.

2.5 The Influence of Tail Length on Performance

The influence of the tail length on the error probability of sequential decoding of

convolutional codes has been studied in [40]. The undetected block error probability

was evaluated as a function of block length and tail length. It was found that the

performance improves with increasing tail length until it reaches the constraint length

v. Beyond this, the performance remains nearly the same. We have performed similar

simulations for sequential decoding of trellis codes and the BER as a function of the

tail length is shown in Figure 2.7, where L is the block length in branches. Optimum

Distance Profile (ODP) trellis codes of constraint length t, = 10 and 14 were used

[84, 85]. The mapping in the tail followed the approach described in Section 2.4. Our

results show that the BER decreases with increasing tail length and that this trend

continues until the tail length reaches the constraint length v. This is consistent with

the observation in [40]. For small tail lengths, the information bits at the end of each
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Figure 2.7: Sequential decoding performance vs. the tail length of trellis codes

block get little protection. This effect causes many errors and dominates the BER

curves as shown in the figure. We conclude that at least a one constraint length tail

is required to minimize the BER.

In [40], it was also observed that the block error probability increases with increas-

ing block length. On the other hand, Figure 2.7 indicates that the BER is independent

of the block length as long as the tail length is larger than the constraint length.
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2.6 Performance of Sequential Decoding

Sequential decoding has been shown to be a good alternative to the Viterbi algorithm

for convolutional codes[46]. It was shown that sequential decoding can perform about

as well as the Viterbi algorithm for convolutional codes by analysis and simulations

[7, 76, 94]. In [63], Pottle and Taylor compared the block error probability of trellis

codes using the Viterbi algorithm, the M-algorithm [45], the Fano algorithm[14],

and the generalized stack algorithm[32]. Their results conform closely to previous

experience with convolutional codes. In this section, the bit error rate of trellis codes

using sequential decoding is compared with the Viterbi algorithm and the channel

cut-off rate bound.

Figure 2.8 shows the bit error rate of trellis codes for 8-PSK modulation as a

function of the SNR using the Viterbi algorithm and sequential decoding. The Fano

Algorithm with a threshold A = 4.0 was used in our simulation along with Unger-

boeck codes with constraint length v = 6 and 8[70]. The performance of the Viterbi

Algorithm with a constraint length v = 6 Ungerboeck code is also shown. It shows

that the Fano algorithm loses about 0.2 dB coding gain compared with the Viterbi

algorithm. However, the Fano algorithm needs a much smaller computational effort.

Furthermore, since its computational effort is essentially independent of the code

constraint length, sequential decoding can overcome its suboptimum performance

compared to Viterbi decoding by using a slightly larger constraint length.

In Figure 2.9, the performance of different constraint length trellis codes with

block mode sequential decoding of block length L = 512 is shown as a function of

SNR. The Fano Algorithm with a threshold A = 4.0 was used in the simulations

along with ODP trellis codes constructed in [84, 85]. Referring to Figure 1.4, we

see that an SNR= 7.6 dB is required to achieve a cut-off rate/i_ = 2 bits/T for an

8-PSK modulation channel. (We refer to the SNR to which the cut-off rate equals a
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Figure 2.8: Sequential decoding vs. Viterbi decoding

given spectral efficiency as the cut-off rate bound.) The performance of the Viterbi

Algorithm with a constraint length v = 6 code taken from [70] and the cut-off rate

bound for 8-PSK modulation at a spectral efficiency of 2 bits/T are also shown in

Figure 2.9. We see that sequential decoding provides about a 1.4 dB coding gain over

64 state Viterbi decoding at a BER of 10 -s and that the performance gap widens

at lower BER's. Since the decoding complexity of sequential decoding is essentially

independent of constraint length, this improvement comes without significant increase

in decoder complexity. It is also observed that the performance of sequential decoding

steadily improves with increasing code constraint length and that the cut-off rate

bound can be achieved at a BElt of 10 -s using a constraint length 15 or longer code.
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2.7 Computational Distribution of Sequential De-

coding

Define Cb as the number of computations required to decode one branch of the code

tree. Suppose that the block length is L + v. The total number of computations

required to decode a block is then CB = Cb(L + v). For Viterbi decoding, the number

of computations Cb is fixed and equals to 2 _ for a constraint length v code. For

sequential decoding, Cb is a random variable and so is Ca. It is well known that the

computational distribution of convohtional codes with sequential decoding can be

approximated by a Pareto distribution [37, 67], i.e.,

52



Pr(Cb > N) = AN -°, (2.23)

where A and p are constants related to the specific code and the specific version of

sequential decoding used and the channel characteristics. In Figure 2.10, we plot

10°
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Z
101

v

13..

10 .2
1 10 100

N

Figure 2.10: Computational distribution for sequential decoding of trellis codes

the computational distribution Pr(Cn > N) of an ODP trellis code with constraint

length u = 9 and block length L = 256 at SNR's = 7.6, 7.8, and 8.0 dB, respectively.

Pr(Cb > N) is computed using the formula

gc
Pr(Cb > N)= _F' (2.24)
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where Nc is the number of blocks for which the number of computations exceeded

N(L + v) and NF is the total number of blocks decoded. Each forward look in the

Fano Algorithm was counted as one computation. We can see from Figure 2.10 that

the computational distribution for sequential decoding of trellis codes can be very

well approximated by the Pareto distribution.
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3

ERASUREFREE SEQUENTIAL
DECODING

In Chapter 2. application of sequential decoding to trellis codes has been investigated.

It shows that significant coding gains can be achieved using sequential decoding.

However, we note that the computational effort of sequential decoding is a random

variable with a Pareto distribution just as in the case of convolutional codes [37, 67].

Thus, although the undetected error probability can be made arbitrarily small, some

data cannot be completely decoded and the probability of incomplete decoding is

usually on the order of 10 -_ to 10 -3 [43]. The performance of sequential decoding is

then limited in the case where a feedback channel is not available. However, if the

drawback of erasures can be overcome, sequential decoding may be a good alternative

to the Viterbi algorithm even if a feedback channel is not available.

Forney and Bower[25] used a simple resynchronization mechanism to avoid the

buffer overflow problem in their hardware sequential decoder. Wang and Costello [78,

79] recently have also introduced several erasurefree sequential decoding algorithms.

In this chapter, a new erasurefree sequential decoding algorithm is introduced and

its application to trellis codes is investigated. In Section 3.1, a general erasurefree

sequential algorithm is presented. In Section 3.2, the performance of a block decoding

scheme, which guarantees erasurefree decoding, is analyzed. Upper and lower bounds
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on the bit error rate of the schemeare derived. The performance of erasurefree

sequentialdecodingis comparedwith the VA by simulation. In Section3.3, a general

resynchronizationschemefor continuous sequential decoding is presented. In Section

3.4, the performance of a continuous decoding scheme is studied via simulation and

compared with the block decoding scheme and with the VA.

3.1 Erasurefree Decoding- the Buffer Looking

Algorithm (BLA)

It has been shown that the computational effort for sequential decoding of trellis

codes is a random variable with a Pareto distribution. Thus, the buffer in a sequen-

tial decoder will occasionally overflow. This will result in data loss (erasures). On

channels where feedback is available, if the buffer overflows, the current block of data

can be declared unreliable and a retransmission can be requested [12]. However, this

approach cannot be used if a feedback channel is not available. In this section, we

present a general erasurefree sequential decoding scheme called the Buffer Looking

Algorithm (BLA). The BLA, which includes the algorithms presented in [25], [78],

and [79] as special cases, guarantees that the buffer will never overflow and thus that

no data will be lost in the process of decoding.

The BLA can be operated in either a block or continuous decoding mode. We will

describe them separately, but the general concept of the BLA is illustrated in Figure

3.1. A buffer of size B is divided into M sections, each with size Bj (1 < j _< M).

A suboptimum but fast decoding algorithm which can be used as part of the BLA

must be selected. One possibility is the M-algorithm[45], which provides a good

tradeoff between decoding speed and performance. For systematic codes, the direct

recovery of the information bits by making hard decisions on the received sequence
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Figure 3.1: Block diagram of the Buffer Looking Algorithm

[25] may be considered. Another possibility is to change the bias k of the Fano metric

in conventional sequential decoding[78]. These suboptimum decoding algorithms will

be called secondary decoders. The idea of the BLA is to monitor the state of the buffer

and to use this information to choose a faster algorithm as the buffer nears saturation.

A primary (conventional) sequential decoder and M - 1 secondary decoders are used.

Assume that the j-th secondary decoder is faster but has poorer performance than

the i-th secondary decoder if i < j. The primary decoder is used when only buffer

section t31 is occupied, while the j-th secondary decoder is used when the first j+l

buffer sections are occupied. The decoder has a core memory that can hold N branch

signals and some other necessary information. We let N = L + v for the block

decoding mode and N = Lt + 1 for the continuous decoding mode, where L is the

block length, v is the code constraint length, and Lt is the backsearch limit of a

continuous decoder.

First, we describe the BLA in the block decoding mode. In this case, the informa-

tion sequence is divided into blocks, each with L information branches. After every L

information branches, we insert v all zero branches and then start encoding the next
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block of L information branches from the all zero state. In this case, we know from

which state to start decoding each block of L information branches, and the decoder

automatically resynchronizes.

The speed factor, #, of a sequential decoder is defined as the number of compu-

tations that the decoder can perform during the time required to receive one branch

(a modulation time period T). Suppose that the decoding speed of the (M - 1)-

th secondary decoder is a constant CM (computations/branch). Then, the algo-

rithm presented below -uarantees that the buffer will never overflow if CM < # and

BM > (L + v) x CM/#. ['he Buffer Looking Algorithm in the Block Decoding mode

(BLA-BD) is described as follows.

0) Obtain a block of L + v signals from the buffer.

1) If only one buffer section is occupied, decode using the conventional Fano

algorithm.

2) If j (1 < j < M) buffer sections are occupied, decode using the (j-1)-th sec-

ondary decoder.

3) If all M buffer sections are occupied, go to 6); otherwise, go to 4).

4) If a terminal ((L + v)-th) node is reached, go to 5); otherwise, go to 1).

5) Release the decoded information bits, obtain the next block of L + v signals

from the buffer, and reset the decoder to the all zero state. Go to 1).

6) Jump to the best node (the one with the best metric) visited in the block and

decode the remaining signals using the (M-1)-th secondary decoder. Release the L

decoded branches, obtain the next block of L + v signals from the buffer, and reset

the decoder to the all zero state. Go to 1).

A flowchart of the BLA-BD is shown in Figure 3.2, where j denotes the number of

occupied buffer sections, I denotes the current level of the decoder, and lb denotes the

level of the best node in step 6). In a practical implementation, an interrupt procedure

58



obtain L+v

signals, 1--0

at

l=l b

yes

1?_ yes

no

no

1
Fano decoder

update l

(j- l)-th decoder

update 1

no

release L decoded branches

re,set decoder

Figure 3.2: A Flowchart of the BLA-BD

59



can be initiated whenever a new buffer section is occupied. The procedure can be

programmed to select the corresponding secondary decoder. A variety of erasurefree

algorithms can be obtained from the BLA-BD by using different secondary decoders.

The BLA-BD guarantees resynchronization at the beginning of each block, but it

results in some rate loss. For a rate k/k + 1 trellis code with constraint length v, the

effective information rate is given by

kL

= (k + 1)(L+ (3.1)

when a tail of length v is transmitted. Large L makes the rate loss small. However,

it will be shown that good performance requires relatively small L. This can be

viewed as a penalty that must be paid by a block decoder in order to guarantee

resynchronization.

Continuous decoding is possible if a resynchronization scheme is available which

is capable of recovering from an incorrect path. The resynchronization scheme is

used when the decoder gets onto a wrong path and cannot recover on its own. In

Section 3.3, a resynchronization scheme is presented that uses hard decisions on re-

ceived signals. It tries to find one constraint length of error free received signals and

use them to resynchronize. If the time required to test one branch in the resynchro-

nization scheme is less than the modulation time period T, the algorithm presented

below guarantees that the buffer will never overflow if BM > 1. The algorithm uses

a backsearch limit Lt that must be chosen at least four or five times the code con-

straint length to maintain good performance. The B,,ffer Looking Algorithm in the

Continuous Decoding mode (BLA-CD) is described as iollows.

0) Obtain a block of Lt + 1 signals from the buffer.

1) If only one buffer section is occupied, decode using the conventional Fano

algorithm.
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2) If j (1 < j < M) buffer sections are occupied, decode using the (j-1)-th sec-

ondary decoder.

3) If all M buffer sections are occupied, go to 6); otherwise, go to 4).

4) If the (Lt + 1)-th node is reached, go to 5); otherwise, go to 1).

5) Shift the signals in the core memory one branch (a branch is decoded and

released) and obtain the next signal from the buffer. Go to 1).

6) Jump to the deepest node visited by the decoder. Release the branches in

the core memory leading to this node (as decoded branches) and obtain the corre-

sponding number of signals from the buffer. Initiate the resynchronization procedure

and use the hard decision received signals as decoded branches during the process of

resynchronization. When the resynchronization procedure stops, go to 1).

A flowchart of the BLA-CD is shown in Figure 3.3, where j denotes the number of

occupied buffer sections, l denotes the current level of the decoder, and 14 denotes the

level of the deepest node in step 6). In the BLA-CD, it is impossible for the decoder

to move back to the first node in the core memory and to look back from there. In this

case, the threshold is lowered to force it to look forward. This automatically imposes

a backsearch limit. It is clear from the algorithm that the maximum number of levels

that the decoder can look back, i.e., the backsearch limit, is Lt. We will analyze and

simulate the performance of the BLA-BD in the next section. The performance of

the BLA-CD is studied in Section 3.4. Our results show that the BLA-CD performs

essentially the same as the BLA-BD.

Before concluding this section, we observe that the BLA-CD does not suffer from

rate loss like the BLA-BD. But since resynchronization schemes are basically proba-

bilistic, it may take a long sequence of received signals to resynchronize successfully.

This problem can be alleviated by using a mixed resynchronization scheme. In this

case, the data are encoded into blocks with a large block length to minimize the rate
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loss. Then the decoder tries a resynchronization scheme if it loses the correct path.

If too long a sequence of received signals is needed to resynchronize, the decoder can

resynchronize at the beginning of the next block.

3.2 Performance of the BLA in a Block Decoding

Mode

In this section, the performance of a simple BLA-BD scheme is analyzed to determine

how the BER of the BLA is affected by parameters such as the speed factor _ and

the buffer size/3. The same approach can be used to analyze more complex versions

of the BLA.

This version of the BLA-BD divides the buffer into two sections and hard decisions

are used as estimates of the transmitted information bits by the secondary decoder.

This is possible for trellis codes which are constructed in systematic form. In this

version of the BLA-BD, step 6) is modified as follows:

6)' Jump to the best node (the one with the best metric) visited in the block and

recover the remaining branches of the block using hard decisions. Obtain the next

block of L + v signals from the buffer and reset the decoder to the all-zero state. Go

to 1).

Also note that, since there are only two sections in the buffer, there is no step

2). The secondary decoder in this version of the BLA-BD is very fast since only one

computation is required to decode one branch (CM = C2 = 1). In this case, the size

of the second buffer section/32 only needs to be larger than (L + v)/lJ to guarantee

that the buffer will never overflow.

Let Pb be the overall BER of the BLA-BD. The BLA-BD may operate in either one

of the two modes, i.e., conventional sequential decoding and suboptimum decoding.
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Let P¢ and Pb" denote the bit error rate of conventional sequential decoding and

suboptimum decoding, respectively. Pc and P_ can be estimated by simulation or by

bounds. Let Pc be the probability that a received branch is decoded by conventional

sequential decoding and P, be the probability that a received branch is decoded by

suboptimum decoding. Since Pc + P, = 1, we have

eb -- Pce:+P,P:

= (I - e.)P; + e,P:. (3.2)

The i-th branch in a block will be decoded by the suboptimum decoder if and

only if buffer section B_ is occupied during the decoding of the block and the i-

th branch is beyond the best node (the ib-th branch), i.e., i > lb. Suppose that

the number of computations required to decode one branch is Cb for c ,ventional

sequential decoding and that the decoder starts decoding the block with b unoccupied

spaces in the buffer. Assume that B2 = (L + v)//_. Then, the buffer section B2 will

be occupied if Cb(L + v) > (b- (L + v)//_)_, i.e., Cb > bf_/(L + v) - 1. The probability

that the i-th branch is decoded by the suboptimum decoder given that the decoder

starts decoding with b unoccupied spaces in the buffer is then given by

ba 1)P(slb) = P(i>ib) XP Cb> L+v

( )-"I b/J I
= _A L+v (3.3)

where P(Cb > N) is the computational distribution of sequential decoding as given

in (2.23), A and p are constants, and P(i > ib) denotes the probability that the i-th

branch is beyond the best node. (P(i > ib) is approximated as 1/2 by assuming that

the best node is uniformly distributed in the block1.) It is easy to see that

tThis approximation is justified by noting that the beat node in a block typic.ally precedes one
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P, = P(b)P(slb)db
+v

91A b_ 1 P(b)db.= +.2 L'_v
(3.4)

Note that b is a random variable which ranges from L + v to B (B > L + v) and

primarily depends on g. We consider three cases. If/_ is very small, B2 will always

be occupied. In this case, the buffer will only have L + v unoccupied spaces after the

previous block is decoded. The distribution of b can then be approximated by

P(b) = 6[b- (L + r,)], (3.5)

where _(.) denotes the unit impulse function. Using (3.4) and (3.5), we obtain an

upper bound on P, given by

A

P' -< 2(#-l)P" (3.6)

If # is very large, the buffer will always be empty. In this case, we may approximate

the distribution of b by

P(_) = _(b- B).

Using (3.4) and (3.7), we obtain a lower bound on P, given by

(3.7)

p. > A (3.8)
- /

For values of the speed factor # between the extremes, we assume that b is uniformly

distributed over [L + v, B], i.e.,

or more noisy branches and that the noise affects the branches of a block independently.
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In this case, we have

_ ifbE[L+v,B]
P(b) = a-(L+vt,

O, otherwise.
(3.0)

P. ( )-"- +,,B-(L+v) x 2 L+v

1 A L v
= : x x -- b

B2 -- (L Jff v) +ms

- 2(p 1) x B (L+v) x

db

L +# v)-Pdb

(3.10)

In the case when B >> L + v, the second term in the brackets is much smaller than

the first one since p > 1. Thus, P, can be approximated by

A L+v

P" _ 2(p- t) x B#(#- 1),-'" (3.11)

The overall approximate BER and its lower and upper bounds can be obtained by

substituting the approximate P, and its lower and upper bounds into (3.2). Substi-

t uting (3.11) into (3.2), we obtain

& A L+v )1 2(p: 1)x
A L+v

2(p - t) × B_,(_,- 1).-, e;

In the normal operating range of the decoder, P, 4( 1. Then, we have

(3.12)

A L+v
ff + D$ (3.13)

2(p- i) x B#(#- 1)*-fJ-s"
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Similarly, we can obtain upper and lower bounds on Pb by applying (3.6) and (3.8)

to (3.2) as follows.

A IL+_,_P A
P: +_- _,_] P: _< Pb _< P_ + 2(_- i) pP_" (3.14)

In the case when P_ << P_, Pb is primarily determined by P,, which is a function of

the speed factor _, the buffer size B, the block length L, the constraint length v, and

the parameters A and p. v and p (p > 1 if the code rate is smaller than the channel

cut-off rate) are determined by the code and the channel SNR, respectively, while A is

typically between 1 and 10 depending on the particular version of sequential decoding

employed [25. 31. 64]. Thus. #, B, and L are the parameters of the BLA-BD that

determine its performance. The best compromise for the BLA-BD is to choose #,

B, and L such that the two terms in the Pb expression are comparable or the second

term is smaller. (3.13) and (3.14) show that it generally requires large B, large/_, and

small L to reduce the BER. In the rest of this section, we present simulation results

that verify our analysis. In the simulations, ODP trellis coded 8-PSK with _, = 9 was

used.

(3.13) and (3.14) show that # is the most critical parameter determining the BER

of the BLA-BD. Figure 3.4 shows the overall BER Pb as a function of/_ with B = 16 K

symbols. It shows that the BER decreases rapidly with increasing/z. When # becomes

greater than about 5, the number of errors contributed by the suboptimum decoder

becomes negligible and the BER decreases very little with further increases in _.

The upper bound (the small/_ case) indicates that the BER is independent of

the buffer size. Figure 3.5 shows the BER of the BLA-BD with L = 128 symbols,

/_ = 3, and SNR = 7.6 dB as a function of the buffer size. /_ = 3 is smaller than the

average number of computations for sequential decoding at SNR = 7.6 dB. Thus,

the curve is quite flat, agreeing with our analysis. For a moderate speed factor/z, the
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Figure 3.4: Influence of speed factor on the bit error rate

BER is expected to decrease with increasing buffer size until the number of errors

contributed by the suboptimum decoder becomes negligible compared with P_. The

other four curves in Figure 3.5 show simulation results with L = 128 symbols,/_ = 3,

and SNR = 7.8 dB; L = 128 symbols,/_ = 4, and SNR = 7.8 dB; L = 256 symbols,

/_ = 3, and SNR = 8.0 dB; and L = 256 symbols,/J = 4, and SNR = 8.0 dB,

respectively. These curves clearly illustrate the expected behavior.

As shown in Figure 2.7 and discussed in Section 2.5, the BER is not _ function

of the block length for conventional complete sequential decoding as long as a one

constraint length tail is added. However, (3.13) and (3.14) show that the BEtt of the

BLA-BD does depend on the block length. Figure 3.6 shows the BER as a function of
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Figure 3.5: Influence of buffer size on the bit error rate

L with B = 16 K symbols. Intuitively, for smaller block lengths, less data is decoded

by the suboptimum decoder and thus the BER is smaller. The simulation results

and the analysis are both consistent with this intuition. (On the other hand, smaller

blocks result in more rate loss as shown in (3.1) and Figure 3.6 does not take the rate

loss into account.)

The above analysis and simulation results show that it requires large _, large B,

and small L to achieve a small BER. In practice, we may first choose L such that

the rate loss is tolerable and then choose B and g such that the number of errors

contributed by the suboptimum decoder becomes negligible compared to P_.

Figure 3.7 shows the performance of the VA with constraint length t, = 6 Unger-
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boeck trellis coded 8-PSK and the cut-off rate bound for 8-PSK modulation at a

spectral efficiency of 2 bits/T. The other two curves in Figure 3.7 show the perfor-

mance of the BLA-BD with constraint length v = 10 ODP trellis coded 8-PSK [85],

buffer size B = 32 K symbols, speed factor/J = 4, and block length L = 256 symbols;

and constraint length v = 13 ODP trellis coded 8-PSK [85], B = 32 K symbols,

p = 6, and L = 256 symbols, respectively. These results show that the BLA-BD with

v -- 13 can achieve more than 1.0 dB of coding gain over the VA and is only about

0.3 dB away from the cut-off rate bound at a BER of 10 -s.

A typical computation in sequential decoding involves regenerating code branches,

finding the branch metrics, computing the path metrics, and choosing the path with
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Figure 3.7: Performance of the BLA-BD

the best metric. These operations are also needed by a Viterbi decoder at each

state in the code trellis. Thus, a computation in the BLA-BD is comparable to a

computation in the VA. The speed factor At for sequential decoding is comparable

to the number of states 2 _ in the VA since At is the maximum average number of

computations which a sequential decoder is allowed for decoding one branch, whereas

the VA requires 2 _ computations per branch. For the codes in Figure 3.7, the VA

requires 64 computations per branch since the v = 6 code has 64 states,whereas the

BLA-BD with v = 13 requiresan average of at most 6 computations per branch.

Thus, the superior performance of the BLA-BD over the VA isachieved with much

lesscomputational effort.Note that the BLA-BD curve with v = 13 shown in Figure
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3.7 loses about 0.2 dB at a BER of 10 -s compared with Curve SD, v = 13, in Figure

2.9. However. the simulation results in Figure 2.9 were obtained using a complete

decoder that r:'quires an infinite buffer while the BLA-BD uses a finite buffer. This

implies that o. modest loss in coding gain is the price that must be paid for practical

sequential decoding.

3.3 The Problem of Resynchronization in Con-

tinuous Sequential Decoding

It is widely believed that continuous sequential decoding does not have good resyn-

chronization capability and thus block decoding is usually preferred [40, 43, 63, 69].

This results in some rate loss, which is undesirable. However, Forney and Bower[25]

have used a backsearch limited Fano Algorithm[14] i_. onjunction with a simple

resynchronization mechanism in a hardware implementation of a continuous sequen-

tial de_'oder using a systematic feedforw_:d constraint length v = 47 convolutional

code. It is easy to see that resynchronization will be successful for a systematic feed-

forward convolutional code if one constraint length of correctly received data is fed

into the encoder replica at the receiver (which will be called the recoder following the

terminology of Forney and Bower[25]). (Another advantage of using systematic codes

is that the information bits can easily be estimated directly from the received sequence

during the process of resynchronization.) But the resynchronization of a sequential

decoder for more powerful non-systematic feedforward codes and systematic feedback

codes remains a problem. In this section, we introduce a general resynchronization

scheme which allows a sequential decoder to be resynchronized for non-systematic

feedforward and systematic feedback codes.

First, we note that it is always po_ible to convert a non-systemati _ feedforward
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encoder to an equivalent systematic feedback encoder[16, 60]. Thus, we only need to

devise a resynchronization scheme for systematic feedback codes. For simplicity, we

only consider rate k/k+ 1 codes, but the scheme can easily be generalized to codes with

other rates. A general implementation of a rate k/k + 1 systematic feedback recoder is

shown in Figure 3.8 (switch S is closed), where h i (i = 0, I,..., k and j = 0, 1,..., v)

,J

"_0 0_

A T

h,oc

Tl(l)

.1
o

D,

yt

Figure 3.8: The implementation of a systematic feedback recoder

denotes the code parity-check coefficients, T(I)= [Tl(l),T_(1),..., T_(1)] denotes the

recoder state at time unit l, and x, = [z_,..., z_'] and y, = [yO y_,..., y_] denote the

recoder input and output vectors at time unit l, respectively. In normal operation,

xt is a hypothetical information input and Yt is the corresponding output. However,
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during the processof resynchronization,we assumethat Yt is obtained directly from

the channel (for convolutional codes) or by making hard decisions (for trellis codes)

and that y0, y_,..., y_ are used as the inputs of the recoder. Resynchronization is the

process of finding the correct state of the recoder from an incorrect state.

A sequential decoder moves forward and backward in the code tree. In practice,

however, the decoder will not be allowed to move more than some maximum number

of levels back from its deepest penetration into the code tree. This is similar to path

truncation in the Viterbi algorithm[73]. If errors occur in a decoded sequence, the

correct path will be lost and the recoder will enter an incorrect state. In this case,

it is impossible for the recoder to get into the correct state again unless certain error

patterns occur. The following recursive equations describe the state transitions in

the code trellis. The state of the recoder at time 1, W(/) = [TI(I),T2(1),...,T,,(I)], is

related to its previous state and the current output vector by

k

i.=l

k

rj(t) = rj+,(t- t) • hjv,;'
i=0

k

= h_,y_,
i--O

l<:j<u-1,

(3.15)

where _ and _ both denote modulo-2 addition. From (3.15), it can be seen that the

state will normally still be incorrect if the previous state is incorrect. Furthermore,

the correct state may never be found because y0 is related to TI(I - 1), which will be

incorrect for some l, and all the other state variables are related to y0.

Note that Yt is known for convolutional codes and can be found by making hard

decisions for trellis codes. Now consider turning the switch S off in Figure 3.8 and

using Yr as the input. Since it is only related to Yl, T,,(1) will be correct ifyt is correct

and will be given by the following recursive equations,
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k

Tj(l) = L+,(l - 1)• h' 'j Yt,
i=O

k

r (t) E''= h_,yj.
i----O

l<__j<v-1,

(3.16)

Using the above recursive equations v times, we will find a correct state if v con-

secutive yl's are correct. For reference, we will refer to the above straightforward

resynchronization method as scheme 1. Let e be the probability that Yt is incorrect.

The probability of successful resynchronization for scheme 1 is given bv

P,r = (1 - e)". (3.17)

P_, is the probability that one constraint length of received (hard decision) data is

error free, since resynchronization is successful if and only if v consecutive error free

data branches are fed into the recoder. The problem is to recognize that v consecutive

branches of data are error free, i.e., to know when to stop the resynchronization pro-

cess. Note that the cumulative Fano metric is large and decoding is fast if the recoder

is in the correct state. Thus, the decoding speed and the Fano metric can be used as

measures of when the resynchronization process should be stopped. The following al-

gorithm uses a simpler measure to stop resynchronization. After a resynchronization

trial, r branches of received data are decoded and the decoded data are compared

with the received data. If all r branches agree, resynchronization is stopped.

A Resynchronization Algorithm for Systematic Feedback Codes:

0) Select r >_ 1 and let j be the deepest node visited by the decoder.

1) Set i = 1, turn S off, and feed yj+l-yj+v into the recoder shown in Figure 3.8

(see(3.16)).
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2) Turn S on and feed [y)+,,+,, 2yj+,,+,,..., yj+_+,]k into the recoder to obtain yj+_+,'°

(see (3.15)).

3) If -o oYj+_,+, # Yj+v÷i, shift the signals in the core memory one branch, use the

hard decision on the (j + 1 )-th received signal as the decoded branch, obtain the next

signal from the buffer, set j _ j + 1, and go to 1). Otherwise, go to 4).

4) If i < r, set i ,---, + 1, and go to 2). Otherwise. release r branches in the core

memory (as decoded branches), obtain the corresponding number of signals from the

buffer, and go to 5).

5) Stop.

Scheme 1 can be viewed as a special case of this algorithm with r = 0. The

probability that the algorithm stops within N >__u + r branches of received data is

difficult to derive exactly but can be lower bounded by

P(N) >_ I - [1 - (I - e)_+']"-_-" . (3.18)

P(N'_ approaches 1 very quickly with N, since e is normally much smaller th_n 1.

If the time required to test one branch is less than the modulation time period T,

the input buffer will not overflow. From the algorithm, we see that it takes at most

r iterations of step 2) to step 4) to test (decode) one branch. The main operation in

-0 This requires about 1/2 keach iteration is step 2), which is used to compute Yi+,,+i"

of the time required to generate the 2k branches leaving each node in a rate k/k + 1

code tree. Thus, 2' iterations of this algorithm are comparable to one computation

in a sequential decoder. The algorithm thus guarantee that the input buffer will not

overflow if r < 2J'/z, where/z is the speed factor of the sequential decoder.

When the algorithm terminates, resynchronization may not be suc_. The

probability of successful resynchronization for the algorithm is a function of r. We

denote this probability as Po_(r). For r = 0, P,,(r) = P,, as given in (3.17). How-
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ever, for r > 0. it is difficult to determine P,,(r) analytically since it is related to

the code structure. We have used simulations to study the influence of r on P,r(r).

Figure 3.9 shows Psi(r) as a function of r for an ODP trellis code with 8-PSK mod-

0.5 r i i ! r T p ! i

H SNR=7.6 dB
H SNR=7.8 dB

0,1 I J | I I I I I I

0 1 2 3 4 5 6 7 8 9 10

r

Figure 3.9: Probability of successful resynchronization vs. r

ulation [84, 85] and v = 10 at an SNR = 7.6 and 7.8 dB, respectively. Note that

the probability of successful resynchronization achieves a maximum for r around 6.

Further increases in r will result in smaller P,r(r) since (1 - e) _+', which reflects the

probability that consecutive received vectors are error free, declines with increMing

r. For smaller r, agreement of r branches of decoded data and received data may

not reflect successful resynchronization. It is seen that the maximum probability of

successful resynchronization is about 0.4, i.e., two or three trims will normally result
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in successfulresynchronization.

3.4 Performance of the BLA in a Continuous De-

coding Mode

If a continuous sequential decoder cannot resynchronize after losing the correct path,

it may flounder forever and give very poor performance. The resynchronization

scheme proposed in the previous section has a high probability of successful resyn-

chronization. In this section, we show that significant coding gains are possible with

the BLA in a Continuous Decoding mode (BLA-CD) using this resynchronization

scheme.

In the BLA-CD, a backsearch limit Lt is imposed. The best value of Lt is deter-

mined by triM-and-error. A large Lt requires more memory and can result in excessive

searches which cause the buffer to near saturation and initiate a resynchronization

process under noisy channel conditions. A small Lt, on the other hand, forces prema-

ture threshold lowerings which cause the decoder to accept errors. The choice of Lt

thus involves trade-offs between cost and performance. In the following simulations,

we have selected Lt so that no significant additional coding gain can be obtained by

selecting a larger Lt.

The version of the BLA-CD used in the simulations is similar to the BLA-BD

of last section. The buffer is again divided into two sections. The BLA-CD enters

a resynchronization mode when the second buffer section is occupied. Figure 3.10

shows the performance of the BLA-CD with constraint length v = I00DP trellis

coded 8-PSK [84,85], r = 6, buffer size B = 32 K symbols, speed factor _ -- 4,

and backsearch limit Lt = 120 branches; and constraint length u = 13 ODP trellis

coded 8-PSK[84, 85], r = 6, B = 32 K symbols, p = 6, and Lt = 220 branches.
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Figure 3.10: Performance of the BLA-CD

For comparison, the performance of the VA with an Ungerboeck u = 6 code and the

cut-off rate bound for 8-PSK modulation at a spectral efficiency of 2 bits/T are also

shown. The results show that the resynchronization scheme works quite well and the

BLA-CD with u = 13 can achieve nearly 1.0 dB coding gain over the VA and is only

about 0.5 dB away from the cut-off rate bound at a BER of 10 -s. (Again note that

the BLA-CD with u = 13 loses about 0.4 dB at a BER of 10 -5 compared with Curve

SD, u = 13, in Figure 2.9, which was obtained using a complete decoder that requires

an infinite buffer.)

The BLA-BD with constraint length u = 13 code and block length L = 256

symbols shown in Figure 3.7 can achieve about 0.2 dB more coding gain over the
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BLA-CD with the same code at a BER of 10 -5. With these parazneters, the rate

loss of the BLA-BD caused by adding a 13 branch tail to each block is about 0.2 dB.

Thus, the BLA-BD and the BLA-CD are comparable in terms of error performance

and energy efficiency at a BER of 10 -s. However, the BLA-CD has a slight edge since

it maintains a spectral efficiency of 2 bits/T while the effective spectral efficiency of

the BLA-BD is about 1.9 bits/T. On the other hand, we can see from Figures 3.7 and

3.10 that the BLA-BD performs better than the BLA-CD at lower SNR's. At higher

SNR's the performance gap between the BLA-BD and BLA-CD becomes smaller and

their performance is expected to be identical asymptotically.
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4

CONSTRUCTION OF

ROBUSTLY GOOD TRELLIS

CODES

In Chapters 2 and 3, we showed that significant coding gains can be achieved with less

computational complexity using sequential decoding and its modifications compared

with the Viterbi algorithm. Pottle and Taylor[63] compared the performance of trellis

codes using the Viterbi algorithm, the M-algorithm [45], the Fano algorithm[14],

and the generalized stack algorithm[32] and similar conclusion was drawn. Thus,

sequential decoding appears to be a good alternative to the Viterbi algorithm for trellis

codes. However, very few papers[49, 61] have addressed the problem of constructing

trellis codes for use with sequential decoding.

Traditionally, the Viterbi algorithm [73] was assumed for decoding trellis codes.

The asymptotic error performance of the Viterbi algorithm is determined by the

minimum free Euclidean distance of the code[74, 95]. Thus, the free distance has been

used as the main criterion in the code construction for use with the Viterbi algorithm

[5, 20, 21, 41, 58, 59, 61, 70, 72, 88]. Trellis codes with one and two dimensional

constellation were presented by Ungerboeck in [70]. These codes achieve coding gains

up to 6.0 dB over uncoded systems with constraint lengths up to 10. This work was

extended for multidimensional constellation in [5, 58, 59, 88] to achieve code rotational
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invariance among other characteristics. All these codes, which are intended for use

with the Viterbi algorithm, are short.

Porath and Aulin[61] constructed large constraint length trellis codes using con-

struction algorithms which extend a subset of subcodes with good distance growths.

Their main purpose, however, was still to construct codes with large free distances.

In [49],Malladi et. al. attempted to construct trelliscodes in systematic feedfor-

ward form with good distance profileswhich are intended for use with sequential

decoding. However, the freedistance of theirsystematic feedforward codes are much

smaller than systematic feedback or non-systematic trelliscodes for the same con-

straintLength. In this chapter, we construct optimum as well as robustly good large

constraint length trelliscodes for use with sequential decoding. [n Section 4.1, the

relationshipbetween the code distance parameters and the computational distribu-

tion of sequential decoding is studied. In Section 4.2, trelliscodes with Optimum

Distance Profiles(ODP) and Optimum Free Distances (OFD) are constructed and

the design criterionfor trelliscodes with sequentialdecoding isdiscussed.In Section

4.3,a new approach is proposed to construct robustly good trelliscodes. In Section

4.4,simulation resultsare presented to show that the new codes can perform better

than the best known codes when sequentialdecoding isused.

4.1 Computational Effort of Sequential Decoding

It has been shown [37, 38, 67] that the c._mputational effort of sequential decoding

for convolutional codes can be approximated by a Pareto distribution, i.e.,

where A and p axe constants.

rate R by

Pr(C6 > N)- AN -p, (4.1)

In [37], it is determined that p is related to the code
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a = Eo(p)_,0 < R < C, (4.2)
P

where C is the channel capacity and Eo(p) is the Gallager function. It is assumed

that the channel is memoryless with a discrete input and a discrete output in the

derivation of (4.1). This assumption can still be regarded valid in the case of ban-

dlimited Additive White Gaussian Noise (AWGN) channel for trellis codes. Thus,

the computational distribution of sequential decoding for trellis codes will still be

Paretian. This has been verified in Chapter 2 by simulation results. We give one

more example to illustrate this. Figure 4.1 shows the computational distribution of

100

A

Z

A= 101

13.

10.2

8.0 dB

8.5 dB

7.5 dB

1 10 100

N

Figure 4.1: Computational distribution for sequential decoding of Ungerboeck code

sequential decoding with a constraint length v = 8 trellis code for 8-PSK modulation
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taken from [70] at SNR = 7.5, 8.0, and 8.5 dB. respectively. The same Fano sequen-

tial decoder is used and P,.(Cb > N) is defined as in (2.24). It clearly shows that the

distributions are very well matched with Pareto distribution.

From (4.1), it is seen that p is a critical parameter that determines the moments

of computations. (4.2) implies that p is related to the code rate which reflects the

channel SNR. This is demonstrated in Figure 4.1. It shows that lower code rate

(higher SNR) results in larger p and thus less computationax effort. However, we

are more interested in the relationship between p (computational effort) and the

code structure for a given SNR. Simulations of various trellis codes with a variety

of constraint lengths show that p is indeed related to specific code structures. In

this section, we study how the code structure reflected by the distance parameters

influence the computational effort.

Sequential decoding needs to compare the paths of different lengths. We have

shown that the Fano metric is ar optimum metric for comparison of variable length

codes and thus it is used in sequential decoding algorithms. From (2.19), we obtain

the branch Fano metric

exp(--Iz - at)12/2a
MB(al, zl) = log EKe, exp(--Iz - aq2/2a

-(k + 1)(1- R), (4.3)

where at and zl are the hypothetical channel signal and the received signal at time

l, respectively, a i is the i-th point in the constellation. R is the code rate defined by

R = k/(k + 1) for a trellis code, and K is the total number of signal points in the

modulation constellation. To simplify the discussion, we may rewrite (4.3) as

Ms( at, zs) = -aaa[za, at] + l_( zl), (4.4)

where _[zi, all = Izi - atl 2 is the Euclidean distance between zt and al, a is a positive

constant and _(zl) is a constant independent of the (hypothetical) transmitted signal.
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For a partial path of length l,_ + 1 branches, the cumulative Fano metric is then given

by

tn

M(l.) = - + Z/z,)} (4.5)
l=0

Assume that the channel is quiet (noise-free). Then zt will be equal to at if the decoder

follows the correct path. On the other hand, zt is not equal to at if a wrong path

is followed. In this case (a wrong path is followed starting from the original node),

_l_.od_[z,,a,] can be lower bounded by the column distance function _, following

(1.21) and M(l,_) is upper bounded by

In

M(l,,) < -_d_. + _-'_ 3(z,). (4.6)
1---0

A sequential decoder abandons a path whenever the Fano metric falls below the

metric of a temporarily more likely path. From (4.5) it follows that a partial path has

a small path metric and is rejected by the decoder if its distance from the received

sequence is sufficiently large. But it is the speed of this rejection that determines

the computational effort. Without loss of generality, we assume that the decoder

follows a wrong path from the original node. Then, we have the upper bound of the

path metric given by (4.6). The bound shows that the metric function along any path

from the correct path decreases at least as fast as the column distance function grows.

Thus, fast rejection of an incorrect path requires a rapidly decreasing metric along

incorrect paths. Consequently, the rapidly increasing column distance function will

guarantees fast decoding. This observation has long been recognized for convolutional

codes [6, 8, 53]. From the above analysis, we see that similar conclusion can be drawn

for trellis codes.

Let us present an example to verify this observation for trellis codes. Figure

4.2 shows the column distance functions (CDF's) of two trellis coded 8-PSK with a
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Figure 4.2: CDF's of two, = 9 trellis codes

constraint length v = 9. Code 1 has parity-check coefficients H ° = 1761, H' = 0106,

and H _ = 0400 in octal form. The parity-check coefficients for code 2 are H ° = 1001,

H 1 = 0036, and H _ = 0546. Both codes have the same free distance _/_,, = 6.343.

However, it is noted that the CDF of code 1 grows much faster than code 2 as shown

in the figure. According to the above analysis, we may expect that the computational

behavior of code 1 will be better than code 2. Figure 4.3 shows the computational

distribution of the two codes at SNR = 7.5 dB. It is evident that the results are

just as we expected, i.e., the computational behavior of code 1 is superior to code

2. This observation also holds for other SNR's. Figure 4.4 and Figure 4.5 show

the computational distributions of the same two codes at SNR -- 8.0 a_ad 8.5 dB,
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Figure 4.3: Computational distribution for sequential decoding of code 1 and code 2

at SNR=7.5 dB

respectively. It is seen that code 1 is much better than code 2 computationally.

The above analysis and simulation show that a trellis code with a rapidly growing

CDF results in better computational effort for sequential decoding. Thus, trellis

codes for use with sequential decoding should be designed such that their CDF's

be optimized to minimize the computational effort. However, this approach is quite

unrealistic since the number of distinct elements in a CDF is a random variable and

is so large that it is impossible to evaluate every one of the CDF for large constraint

length codes. Actually, it might not be necessary to optimize the CDF in the code

construction for trellis codes by noting the following facts. First, from (4.6), we notice
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Figure 4.4: Computational distribution for sequential decoding of code 1 and code 2

at SNR=8.0 dB

:hat the initial portion of the CDF. i.e., the distance profile play a more important

role than its later part since a faster growing initial portion will prevent the sequential

decoder to get into a wrong path too deep and thus the computational effort to back

down from the wrong path will be saved. Secondly, a code with a faster growing

distance profile may also have a better CDF for a certain free distance. Thus, we

may only need to optimize the distance profile in the code construction for sequential

decoding. This approach has been used for construction of convolutional codes for

sequential decoding[39]. To illustrate this point, we give one more example in this

section.
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Figure 4.5: Computational distribution for sequential decoding of code 1 and code 2

at SNR=8.5 dB

Figure 4.6 shows the distance profiles of two trellis coded 8-PSK with a constraint

length v = 13. Code 3 is an ODP trellis code whose parity-check coefficients are

H ° = 33001, H 1 = 16266, and H 2 = 01400. Code 4 is the code constructed by

Porath and Aulin[61] whose parity-check coefficients are H ° = 20201, H l = 12746,

and H 2 = 00200. Both codes have the same free distance _,ee = 8.686. Figure 4.6

shows that code 3 has a more rapidly growing distance profile than code 4. The,

the computational distribution of code 3 should be better than code 4. However, the

difference of the distributions of the two codes may not as noticeable as code 1 and

code 2 since the first several CDF's are identical. The computational distributions of

89



2

cll

6.0

5.0

4.0

3.0

2.0

1.0

I
0

J

/__4/

3 6 9 12 15

i

Figure 4.6: Distance profiles of two v = 13 trellis codes

the two trellis codes shown in Figures 4.7, 4.8, and 4.9 are just as we expected.

4.2 Optimum Distance Profile and Optimum Free

Distance Trellis Codes

The above analysis and simulation resultsshow that the column distance function,

especiallyits initialportion, the distance profile,plays a very important role for

sequentialdecoding. Trelliscodes with good column distance functions or more im-

portantlygood distance profilesmust be used for sequentialdecoding to achievegood
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Figure 4.7: Computational distribution for sequential decoding of code 3 and code 4

at SNR:7.5 dB

computational performance. On the other hand, sequential decoding is a nearly maxi-

mum likelihood algorithm for which the error probability decreases exponentially with

the free distance[8, 74]. Thus, we wish to maximize the free distance to reduce the

error probability and to optimize the distance profile to achieve good computational

performance.

A trellis code is said to have a distance profile (d_, _,"-, _) superior to the

distance profile (d0_, dr,..., of another code of the same constraint length v if for

some p, 0 <_ p _< v,
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= a?, i=o,1,...,p-i
(4.7)

> d_, i=p.

We say a code is an optimum distance profile code if its distance profile is equal or

superior to that of any other code with the same constraint length. In this section,

we present the computer march results for Optimum Distance Profile (ODP) and

Optimum Free Distance (OFD) trellis codes for 8-PSK and 16-QAM modulation.

The code search algorithm is straightforward in an exhaustive search form. It

retains the code which has the best distance profile. If several codes have the same
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at SNR=8.5 dB

distance profile, the one having the largest free distance is retained. The codes ob-

tained using this approach may be called robustly optimal distance profile trellis

codes following the notion used for convolutional codes[39]. We have observed that a

lot of codes have the same distance profile but have a variety of free distances. For

example, the free distances of v = 13 trellis codes for 8-PSK modulation with an

optimum distance profile are from 5.?57 to 8.686. Thus, the construction of robustly

optimal distance profile codes is necessary to guarantee finding codes that have large

free distances.

Tables 4.1 and 4.2 show the results of computer searches for the ODP trellis codes
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Table 4.1: ODP trellis codesfor 8-PSK modulation

H0 Hl n2

15 O2

4

ODP UG P&A MAL ODP

3.17 2.59 - 3.17 4.00

Y (de)
UG P&A MAL
, , ,

4.59 - 3.17 3.01

25 16

1

5 i 77 26
i

l

6 177 042

7 201 072

3.17 2.59 2.59 3.17 4.00

i

3.76 3.17 3.17 3.76 4.00

3.76 2.59 2.59 3.76 4.00

4.00 2.59 2.59 4.00 4.00

5.76

6.34

5.17 5.17 3.17 3.01

5.76 3.76 3.01

6.34 3.76 3.01

6.59 6.59 4.00 3.01

8 701 266 300 4.34

9 1055 0502 0400 4.34

10 2201 0666 1400 4.59

11 4047 2302 0400 4.93

12 10517 06462 044430 4.93

13

14

33001 16226 01400 -93

57001 22266 35400 5.52

15 104001 045666 035400 5.52

2.59 2.59 4.34 6.93

3.76 3.17 4.34 6.93

3.17 3.17 4.34 7.52

3.17

3.76

3.76

4.93 8.10

4.93 8.34

4.93 8.69

4.93 8.69

4.34 4.93 9.27

7.52 7.52

7.52 7.52

52

4.34 5.40

4.93 5.40

8.10 4.93 5.75

8.34 4.93 6.07

8.69 4.93 6.20

8.69 5.52 6.38

- 5.52 6.38

9.51 6.10 6.66
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Table 4.2: ODP trellis codes for 16-QAM modulation

v H0 HI I-I2 H 3
ODP UG MAL ODP UG MAL

3 11 06 - - 4.0 3.0 3.0 4.0 5.0 3.0

4 23 12 - - 4.0 3.0 4.0 4.0 6.0 5.0

5 61 12 20 __ 4.0 3.0 4.0 5.0 6.0 5.0

(dB)

3.01

3.01

3.98

4.776 115 016 _0 - 4.0 4.0 4.0 6.0 7.0 5.0

7 261 132 100 - 5.0 3.0 5.0 7.0 8.0 5.0 5.44.

8 401 066 100 - 5.0 4.0 5.0 8.0 8.0 6.0 6.02

9 1401 0166 0300 - 6.0 4.0 5.0 8.0 8.0 7.0 6.02

10 3101 1652 1500 - 6.0 - 5.0 8.0 - 7.0 6.02

11 4001 1352 1500 - 6.0 - 6.0 8.0 - 7.0 6.02

12 11657 06306 01300 - 6.0 - 6.0 8.0 - 7.0 6.02

13 31051 16606 15300 06000 6.0 - 6.0 9.0 - 8.0 6.53
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for 8-PSK and 16-QAM modulations, respectively,wherethe parity-checkcoefficients

HJ is defined as

H ._=(hl,h_,__ _ ,...,h_),j=O, 1,...,k. (4.8)

All the H j's are expressed in octal form. In the coding literatures, the as' mptotic

coding gain is often used to judge the "goodness" of a trellis code. Suppose that

A1 is the minimum distance between the points in a corresponding uncoded 2* point

constellation. The asymptotic coding gain 7 of a trellis code compared to the uncoded

case is given by

7 = lOlogto(d_,.,,/A_)dB. (4.9)

The free distance and the asymptotic coding gain _ of the optimum distance profile

(ODP) codes are listed in the Tables.

It requires a large space to list the distance profile of a code. Thus, the minimum

distances of the ODP codes, which are good indicators of the distance profiles, are

listed in the Tables in stead of their distance profiles. For comparison, we also have

included the minimum distance and free dist: :e of Ungerboeck (UG) codes [70, 72],

Porath and Aulin's (P&A) codes [61], and the systematic feedforward codes con-

structed by Malladi et. al. (MAL) [49] in our Tables. Ungerboeck code and Porath

and Aulin's codes are best known free distance trellis codes for two-dimensional mod-

ulations and the trellis codes of Malladi et. al. are the only trellis codes intended for

use with sequential decoding which have good distance profiles. Comparison shows

that the ODP trellis codes have much better distance profiles than the UG and P&A

codes and slightly better than the MAL codes.

An anomaly shown in the Table 4.1 and 4.2 is that the free distances of some short

constraint length ODP codes are much smaller than the UG and P&A codes. For
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example,the u = 70DP code in Table 4.1 has only a free distance of 4.0 compared

with the free distance of 6.59 of the UG and P&A codes. Simple calculation shows

that the u = 70DP code in Table 4.1 will lose 2.2 dB asymptotic coding gain

compared with the UG and P&A codes that have a optimum free distance. This is

quite different from the case of convolutional codes where the free distance suffers

little when the distance profile is optimized[39]. Thus, ODP codes clearly do not

provide the best trade-off between distance profile and free distance.

Next, we construct the trellis codes that have Optimum Free Distances (OFD).

The code search algorithm is also straightforward in an exhaustive search form. The

code search algorithm retains the code which has the best free distance. If several

codes have the same free distances, the one having the best distance profile is retained.

The codes obtained using this approach may be called robustly optimal free distance

trellis codes also following the notion used for convolutional codes[39]. Tables 4.3

and 4.4 show the computer search results for the OFD trellis codes for 8-PSK and

16-QAM modulations, respectively. The notation is the same as in Table 4.1 and 4.2.

For comparison, the minimum distance and free distance of Ungerboeck (UG) codes

[70, 72], Porath and Aulin's (P&A) codes [61], and the systematic feedforward codes

constructed by Malladi et. al. (MAL) [49] are also included in our Tables.

Tables 4.3 and 4.4 show that the OFD codes achieve a much better distance profile

than The UG and P&A codes. However, compared them with the ODP trellis codes,

it seems that the OFD trellis codes do not provide the best trade-off between distance

profile and free distance either. We give an example to illustrate this point. Figure

4.10 shows the distance profiles of ODP, OFD, and Ungerboeck (UG) trellis coded

8-PSK with u = 7. It shows that the OFD code has a much inferior distance profile

to the ODP code although it improves upon the Ungerboeck code.

From the above discussion, we may conclude that neither the ODP nor the OFD
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Table 4.3: OFD trellis codes for 8-PSK modulation

v Ho H1 H2 _ (cm)
OFD UG P&A MAL OFD UG P&A MAL

3 13 02 04 2.59 2.59 - 3.17 4.59 4.59 - 3.17 3.61

4 35 02 10 3.17 2.59 2.59 3.17 5.17 5.17 5.17 3.17 4.12

5 67 02 34 3.17 3.17 3.17 3.76 5.76 5.76 5.76 3.76 4.59

6 147 042 060 3.17 2.59 2.59 3.76 6.34 6.34 6.34 3.76 5.01

7 375 064 112 3.17 2.59 2.59 4.00 6.59 6.59 6.59 4.00 5.18

8 515 356 314 3.17 2.59 2.59 4.34 7.52 7.52 7.52 4.34 5.75

9 1201 0666 0300 4.34 3.76 3.17 4.34 7.52 7.52 7.52 4.93 5.75

10 2771 1112 0400 4.34 3.17 3.17 4.34 8.10 7.52 8.10 4.93 6.07

trellis codes provide good compromise between distance profile and flee distance for

some constraint length. In next section, we present an algorithm to construct robustly

good trellis codes which provide a good trade-off between distance profile and free

distance.

4.3 Robustly Good Trellis Codes

It has been shown that both the ODP and the OFD trellis codes might not be the

good choice for use with sequential decoding for some constraint lengths. In this

section, we propose a new construction algorithm to construct trellis codes that have

both a good distance profile and a good free distance. Actually, some of the codes
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Table 4.4: OFD trellis codes for 16-QAM modulation

4

6

8

H 1 n2

15 02 04

31 12 14

41 22 34

121 012 054

325 056 120

501 166 100

1401 0266 0300

OFD UG MAL OFD UG MAL
(dB)

3.0 3.0 3.0 5.0 5.0 3.0 3.98

3.0 3.0 4.0 6.0 6.0 5.0 4.77

4.0 3.0 4.0 6.0 6.0 5.0 4.77

4.0 4.0 4.0 7.0 7.0 5.0 5._

4.0 3.0 5.0 8.0 8.0 5.0 6.02

5.0 4.0 5.0 8.0 8.0 6.0 6.02

6.0 4.0 5.0 8.0 8.0 7.0 6._

obtained using this algorithm have an optimum distance profile or an optimum free

distance. However, the algorithm itself does not guarantee finding an optimum code

in any sense. We call the codes constructed using this algorithm Robustly Good

Codes (RGC).

Assume that a robustly good trellis code of constraint length v is obtained. The

approach used to find a constraint length v + 1 robustly good trellis code is to find the

code that improves the free distance or the distance profile of the constraint length v

code with the priority of improving the free distance. In other words, we try to find

a longer code which has a free distance or a distance profile superior or identical to

the shorter one.
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Figure 4.10: Comparison of distance profiles for three v = 7 trellis codes

Suppose that the free distance and distance profile of a robustly good trellis code

with constraint length v are _/re,(V) and d_(v) = {_(v),d_(v),... ,_(v)}, respec-

tively. Then a robustly good trellis code with constraint length v + 1 can be found

using the following algorithm:

t

0) Set _/',e, = _,e,(v) and an' = {_',_',..., _', _+,} = (_(v),_(v),... ,_(v),_(v)}.

1) Select a new code C by systematically changing the parity-check coefficients.

Set i = 0.

2) Compute the column distance _ of code C.

3) [f _ < d_i, go to 8). Otherwise i ,- i + 1, go to 4).

4) If i < u + 1, go to 2). Otherwise, go to 5).
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5) Compute the free distanced_r,, of code C. If _r,, > _/_,,, print the parity-

check coefficients of code C, _,,,, d _ = {_, _,.-., _+_ }, and "a better free distance

code is found". Otherwise, go to 6).

6) If _/,,, < _/_,,, go to 8). Otherwise, go to 7).

7) If _ > _' for some i, print the parity-check coefficients of code C, _,,, _,

and "a better distance profile code is found".

8) If the set of codes is exhausted, stop. Otherwise, go to 1).

A code will be excluded for further consideration if it has a inferior distance profile

to the tentative distance profile d 2'. Since d _' is very close to the optimum distance

profile, majority of codes will be eliminated before the algorithm reaches step 4).

The tentative distance profile is updated only if a new code with the same or better

distance profile has a larger free distance than the free distance. This is different

from the search for ODP codes where the distance profile is updated whenever a

new tentative code has a better distance profile, which guarantees finding codes with

optimum distance profile but may result in codes with poor free distance as shown in

Table 4.1 and 4.2. The algorithm also prints out those codes that have the same free

distance as the tentative code _'_,, but a better distance profile. This allows us to

select the codes that result in a good trade-off between the distance profile and free

distance. Thus the algorithm guarantees finding a trellis code that is no worse than

its previous constraint length in terms of free distance and distance profile.

The initial code can be chosen such that it results in a good trade-off between the

distance profile and free distance. We start to construct trellis codes at a constraint

length of 3. We retained a code that has the same free distance and the same distance

profile as the OFD code. The trellis codes with larger constraint lengths are then con-

structed using the above algorithm. Tables 4.5 and 4.6 show the results of computer

searches for the robustly good trellis codes for 8-PSK and 16-QAM modulations, re-
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Table 4.5: Robustly good trellis codes for 8-PSK modulation

v H 0 H I H2

3 15

RGC UG P&A MAL RGC

06 04 2.59 2.59 - 3.17 4.59 4.59 - 3.17 3.61

UG P&A MAL

Y(dB)

4 35 12

5 67 26

6 121 066

7 337 026

10 3.17 2.59 2.59 3.17 5.17 5.17 5.17 3.17 4.12

20 3.17 3.17 3.17 3.76 5.17 5.76 5.76 3.76 4.12

060 3.76 2.59 2.59 3.76 6.00 6.34 6.34 3.76 4.77

100 3.76 2.59 2.59 4.00 6.34 6.59 6.59 4.00 5.01

8 701 166 300 4.34

9 1175 0142 0400 4.34

10 2015 0402 0400 4.34

11 4047 2302 0400 4.93

12 10517 06462 04400 4.93

13 33001 16226 01400 4.93

14 57001 22266 35400 5.52

15 104001 045666 035400 5.52

2.59 2.59 4.34 6.93

3.76 3.17 4.34 6.93

3.17 3.17 4.34 7.76

- 3.17 4.93 8.10 -

- 3.76 4.93 8.34 -

- 3.76 4.93 8.69

- - 4.93 8.69 -

- 4.34 4.93 9.27 -

7.52 7.52 4.34 5.40

7.52 7.52 4.93 5.40

7.52 8.10 4.93 5.89

8.34 4.93 6.07

8.69 4.93 6.20

- 8.69 5.52 6.38
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Table 4.6: Robustly good trellis codes for 16-QAM modulation

dL,
v rio H1 n2 a 3 _' (cm)

RGC UG MAL RGC UG MAL

3 13 02 04 - 3.0 3.0 3.0 5.0 5.0 3.0 3.98

4 23 06 14 - 3.0 3.0 4.0 6.0 6.0 5.0 4.77

5 41 16 34 _ 4.0 3.0 4.0 6.0 6.0 5.0 4.77

6 141 046 054 - 4.0 4.0 4.0 7.0 7.0 5.0 5.44

7 315 102 120 - 4.0 3.0 5.0 8.0 8.0 5.0 6.02

6.02

6.02

6.02

6.02

6.02

8 441 372 300 - 5.0 4.0 5.0 8.0 8.0 6.0

9 1401 0166 0300 - 6.0 4.0 5.0 8.0 8.0 7.0

10 2501 1352 1500 - 6.0 - 5.0 8.0 - 7.0

11 4001 3352 1500 - 6.0 - 6.0 8.0 - 7.0

12 16547 05326 04300 - 6.0 - 6.0 8.0 - 7.0

13 35153 06452 13500 16000 6.0 - 6.0 9.0 - 8.0 6.53
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spectively. For comparison,we also have included the minimum distance and free

distance of Ungerboeck (UG) codes [70, 72], Porath and Aulin's (P&A) codes [61],

and the systematic feedforward codes constructed by Malladi et. al. (MAL) [49] in

our Tables. Compared with Table 4.1 - 4.4, we see that the new codes achieve nearly

the same free distances as the OFD codes and nearly the same distance profiles as

the ODP codes.

4.4 Simulation Results

Robustly good trellis codes have been constructed in last section. Comparison of

the new codes with the best known trellis codes of Ungerboeck[70} and Porath and

Aulin[61] shows that the new codes provide a better trade-off between distance profile

and free distance. In this section, simulation results are presented to show that better

performance can be achieved using sequential decoding when these codes are used.

First, we note that the error performance of a trellis code is primarily determined

by its distance spectrum when a maximum likehood (such as Viterbi) decoding is

used[74, 95]. At high SNR's, the dominant term in the distance spectrum is the

free distance and its multiplicities. Thus, the trellis codes that have the largest

free distances and the smallest multiplicities are usually chosen for use with Viterbi

decoding. It has been shown[76, 94] that sequential decoding can perform about as

well as Viterbi decoding by random coding arguments. It has been further shown [8]

that the error performance of sequential decoding for a specific code is also determined

by its free distance and its multilicities. Thus, we expect that the (undetected) error

performance of sequential decoding for a trellis code be determined by the code's free

distance and its multiplicities.

The undetected error probabilities of the new codes and the Porath and Aulin's

codes[61] are compared first. To obtain the undetected bit error rate, we allow a Fano
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sequential decoder to decode a noisy sequence without a time limit (or with an infinite

buffer size). In Figure 4.11, we show the error performance for sequential decoding

10 .4

10.5

NEW
P&A

| j I I i I i L , i

7.0 7.5 8.0 8.5

SNR (ES/No, dB)

Figure 4.11: Performance comparison using sequential decoding

of the new (NEW) rate 2/3 trellis coded 8-PSK taken from Table V and the Porath

and Aulin's (P&A) rate 2/3 trellis coded 8-PSK with constraint length v = 13. Both

the NEW code and the P&A code have the same free distance _/r,, = 8.69. Thus,

we expect that both NEW and P&A codes have about the same error performance.

Figure 4.11 shows that the NEW code actually perform better than the P&A code.

Intensive simulations have been run for other constraint lengths. Results show that

the codes that have a substantially better column distance function or distance profile

always outperform other codes in term of undetected error probability when the free
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distances are comparable. This may be attributed to that the early growth of the

column distance function can prevent the sequential decoder to follow a wrong path

too deep to be get rid of it.

The above simulation results and discussion show that the new codes achieve bet-

ter (undetected) error performance than the best known codes for the same constraint

length when sequential decoding is used. We also have demonstrated that the new

codes can achieve better computational performance since they have better distance

profiles. In practical application of sequential decoding, the data can be transmitted

in blocks. Some very noisy blocks may require a large amount of computations which

may be untolerable in practice. Sequential decoder may be applied in an ARQ com-

munication system [12]. In such a system, a block can be declared unreliable and a

retransmission can be requested if a predetermined computational limit is exceeded

for a block. In an ARQ system, the system throughput, which is defined as the num-

ber of blocks that are successfully received over the total number of blocks attempted,

is the primary performance criterion. The better computational performance of the

new codes with sequential decoding implies larger throughput. On the other hand,

Figure 4.11 shows that the new codes achieve better error probability than other

codes that known to us. Thus, the new codes are compared very favorably with the

best known codes in an ARQ communication system.

In Chapter 3, we showed that the Buffer Looking Algorithm (BLA) can be used to

achieve erasurefree sequential decoding. In this case, the BLA decoder buffer will less

likely be occupied if the new codes are used because of their superior computational

performance. Thus, better overall performance can be achieved when the new codes

are used with the BLA. In Figure 4.12, we compare the overall performance of the

same NEW code and P&A code as in Figure 4.11 with constraint length of v = 13

using the Buffer Looking Algorithm. The BLA-BD with a buffer size B = 16 K
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Figure 4.12: Performance comparison using the BLA

symbols, a decoder speed factor # = 4, and a block length L = 256 symbols (512

information bits) was used for our simulation. Figure 4.12 shows that the NEW code

has a better overall performance over the P&A and the new code achieves about

0.1 dB coding gain over the Porath and Aulin code for the same constraint length.

The number may not be very impressive, but we must keep in mind that this gain

comes out without any other penalty. It is the pure gain by using our new codes for

sequential decoding.
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5

PROBABILISTIC

CONSTRUCTION OF TRELLIS

CODES

In Chapter 4, optimum or nearly optimum trellis codes are constructed for use with

sequential decoding. Trellis codes for 8-PSK and 16-QAM modulation with constraint

lengths up to 15 have been found. These codes have been shown to perform better

than the best known trellis codes when sequential decoding is used. However, the code

construction algorithms used are essentially exhaustive search with some rejection

rules. The number of possible codes for a rate k/k + 1 systematic feedback code

with constraint length u is about 2 (k+l)_. Thus, it becomes impractical to conduct

exhaustive search for large constraint lengths.

Porath and Aulin[61] proposed non-exhaustive search code construction algo-

rithms for construction of good large constraint length trellis codes. Their algorithms

are a generalization and combination of Lin and Lyne [10, 33, 47] type algorithm.

Malladi et al [49] also used a Lin and Lyne type algorithm to construct systematic

feedforwaxd trellis codes for use with sequential decoding. This type of algorithms

guarantee that codes with good distance growth can be found and thus they appear

to be a good choice for construction of convolutionai or trellis codes for use with

sequential decoding. However, it is the code free distance that determines the error
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performance. Lin and Lyne type algorithm cannot guarantee that codes with large

free distances are found. Furthermore, it is very difficult to evaluate the free distance

of codes with large constraints. This poses a problem for the selection of good codes

in any conventional code construction algorithm. In this chapter, we investigate a

probabilistic approach to construct good large constraint length trellis codes for use

with sequential decoding. In Section 5.1, results from random coding are reviewed

and simulation results for trellis codes are presented to illustrate how randomly cho-

sen codes perform. In Section 5.2, two code construction algorithms are proposed. In

section 5.3, simulation results are presented to show that the codes constructed can

achieve the cut-off rate bound at a bit error rate of 10 -s - 10 -s.

5.1 Results from Random Coding

Traditionally, trellis codes are selected based upon either the free Euclidean distance,

distance spectrum, and/or the distance profile depending on whether Viterbi decoding

or sequential decoding is used for decoding. Actually, the error performance of a code

can only be determined by its entire distance spectrum. Better free distance may not

result in better performance since the multiplicity of the free distance and of some

larger distances also play an important role. For trellis codes, the difference between

the free distance and the next smallest distance of a code may be very small [66, 77].

Hence, using free distance as the only measure for selecting good codes may not be

justified even for Viterbi decoding.

The ultimate purpose of code construction is to determine the codes that give

the best performance. For large constraint length codes, it may be easier to select

codes based upon their actual performance than upon their distance spectrum. SD

performs almost as well as the VA and its average number of computations is very

small. Thus, it is an ideal tool to examine the performance of a set large constraint
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length codesduring code construction. Since it is virtually impossible to calculate

the freedistance of largeconstraint length codes,much lessthan the entire distance

spectrum,the evaluation of the performanceof largeconstraint length codesmay be

the best practical way to construct large constraint length codes.

Small constraint length codesmay beconstructedeither by handor by exhaustive

search.However,sincethe numberof possiblecodesincreasesexponentially with the

constraint length, it is impossible to conduct an exhaustivesearchto construct large

constraint length codes. Large constraint length codes are usually constructed by

restricting the searchto a small set of codes[49,61]. It is well known that the average

error probability of all rate R = k/n trellis codes satisfies the bound[76]

2-(v+_}k_/R

P_,,(e) < (2k - 1)[ 1 _ 2_,kRo/R]2 (5.1)

for 0 < R <_ Ro(1 - e), where v is the constraint length of the code, _ is a positive

constant, and Ro is the computational cut-off rate of sequential decoding. It can be

shown that at least a fraction 1 - A of all codes in the collection must have a P(e)

no larger than _P_(e) [89]. For example, it is shown that at least 90% of all codes

have error probability P(e) < 0.1P_.(e) or 50% of all codes have P(e) < 0.hP,_,,(e) by

choosing A = 0.1 or 0.5 respectively.

Although the random coding bound (5.1) is derived for convolutional coding, we

feel strongly that it still holds for trellis coding since the two of them is very similar

in the sense of code structure. To see what the random coding bound means, perfor-

mance of some randomly chosen trellis codes are evaluated by sequential decoding.

Figure 5.1 shows the performance of 200 randomly chosen rate 2/3 trellis codes for

8-PSK modulation with v = 8 at SNR = 8.0 dB. It is noted that several codes are

found with very good performance and most of the codes perform very close. Similar

results can be gotten for codes with QAM modulation. Figure 5.2 shows the perfor-
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Figure 5.1: Performance of randomly chosen 8-PSK codes

mance of 200 randomly chosen rate 3/4 trellis codes for 16-QAM modulation with

v=8at SNR= ll.5dB.

The above discussions indicate that many good codes exist. Hence if the best

codes cannot be found, a randomly selected code will probably give good error per-

formance. From (5.1), it is seen that arbitrarily low error probability can be achieved

with sufficiently large v. Since the computational effort of sequential decoding is

essentially independent of v, sequential decoding ca,. achieve very good performance

with tolerable complexity when the code rate R is iess than the cut-off rate tt0.
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Figure 5.2: Performance of randomly chosen 16-QAM codes

5.2 Code Construction

Analysis and simulation results in last section show that many good codes exist. In

this section, we present two construction algorithms to search good large constraint

length trellis codes. The parity check coefficients of trellis codes are generated ran-

domly and the performance of the codes are evaluated and compared. Good codes are

retained. The two algorithms differ in the way to stop the code search process. The

first algorithm stops after a certain number of codes are examined and the second al-

gorithm utilizes simulated annealing approach to stop the process. Our construction

algorithms restrict the search to a small set of codes just like those of [49, 61], but
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the set of codes are chosen randomly instead.

Let Arc be the number of codes to be examined, N_ be the number of encoded

sequences (each sequence consists of m information bits) to be decoded for each code,

and P_ be the average bit error probability of a code. The first construction algorithm

is as folio,vs.

Construction Algorithm 1 (CA-l, Random Search):

1. Choose the SNR at which the codes are to be evaluated, Arc, and Nb. Let n_ and

nb be the number of codes examined and sequences decoded thus far, respectively.

Set n_ = 0, nb = 0, and Pb = 1.0.

2. Select a code by randomly choosing the generator (or parity-check) coefficients.

3. Encode a randomly chosen sequence of m information bits using the code

chosen in 2.

4. Add channel noise to the encoded sequence.

5. Decode the corrupted sequence using sequential decoding. Set nb = nb + 1. If

n_ < N_, go to 3. Otherwise, go to 6.

6. Calculate the average bit error probability P_t of the Nb encoded sequences. If

Pbt > Pb, go to 8. If Pbt _< Pb, go to 7.

7. Print Pbt and the generator (or parity-check) coefficients of the code. Set

Pb = P_,.

8. Set nc - nc + I. Ifnc < No, go to 2. Otherwise, stop.

Our confidence in the performance evaluation of a code depends on the number

of errorsdecoded. Itrequiresdecoding more encoded sequences to make more errors.

This results in longer computer search time. Nb is usually chosen to make sure that

several hundred errors being decoded. Large SNR results in few errors. Thus, longer

computer search time is required to generate a fixed number of errors for larger SNR.

Usually, the codes constructed at a low SNR have small multiplicities. As we will
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show below, they perform better than the Ungerboeck codes at low SNR. In our code

construction, a SNR close to cut-off rate bound is chosen. The information block size

m is chosen to be 1000 and 1500 bits for 8-PSK and 16-QAM modulation respectively.

Some modifications to the above algorithm can be made to speed up the con-

struction. The BER of a good constraint length v code cannot be larger than the

BER of a good v - 1 code. Thus, we get an estimate of the expected number of

errors for a constraint length v code from previous constructions. The estimate can

be used as a limit for the number of errors. When the number of decoded errors for

a code exceeds the limit, the performance evaluation can be stopped and this code is

eliminated as a bad code. Similarly, we can also set a limit for the average number

of computations. Once the average number of computations for a code exceeds the

limit, the performance evaluation can be stopped and the code is eliminated as a bad

one. These modifications drop some poor codes in an earlier stage of performance

evaluation. Thus, computer search time can be reduced and the performance of the

codes constructed will not be affected.

To insure that good codes are found, two steps are employed in our construction.

First, several codes that perform well at the chosen SNR are obtained from CA-1.

These codes are then evaluated over a wide range of SNR's with much more data

being decoded. This allows us to select the best code with a high degree of confidence

while the computer search time is reduced significantly.

Code construction may also be viewed as a combinatorial optimization problem

where the parity check (or generator) coefficients are the variables and the free dis-

tance or the performance of a code is the objective (cost) function. A typical combi-

natorial optimization problem seeks the minimum or maximum of a given objective

(or cost) function of many variables. The objective function represents a quantitative

measure of the "goodness" (or "badness") of some complex system. The variables
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aresubject to interwining constraints.

Simulated annealing is a computational heuristic for obtaining approximate so-

lutions to combinatorial optimization problems. Initially, the Metropolis algorithm

[55] was used to simulate numerically the annealing process to gain an understanding

of the ground state configuration. Kirkpatric et al. [42] first investigated the use of

simulated annealing in connection with the physical design of computers. Since then,

it has been applied to various combinatorial problems with varying degree of success

[13, 15]. Good block codes (both source and channel codes) have been constructed

using simulated annealing in [13]. We investigate the construction of good trellis

codes using simulated annealing.

Define the energy (cost function) of a code C as E(C) = Pb(C), where Pb(C) is

the average bit error probability of the code C at some SNR. Let Are be the number

of energy drops required to lower the temperature, N; be the number of iterations

required to lower the temperature, and N_ be the number of consecutive temperature

stages that produce no change in the code required to stop the code search. The

construction algorithm is as follows.

Construction Algorithm 2 (CA-2, Simulated Annealing):

1. Let n, be the number of energy drops, n; be the number of iterations, and nc

be the number of consecutive temperature stages that produce no change in the code.

Choose a code C and a temperature T. Let n, = 0, nl = 0, and nc = 0.

2. Choose :_ code C', a perturbation of C (randomly "jiggle" one coef[icient).

Let AE = E(C') - E(C). If AE < 0, C _ C' and n, = n¢ + 1. Otherwise, with

probability exp(-AE/T), C _ C'. If C +- C' occurs, let n_ = 0.

3. ni=ni+ l.

4. If n, > N_, go to 6. Otherwise, go to 5.

5. If ni > Ni, go to 6. Otherwise, go to 2.
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6. Let n_ = 0, n; = 0, no = nc + 1, and T _ c_T (1 > c_ >_ 0.9, a constant). If

nc < No, go to 2. Otherwise, print out the code generator (or parity-check) coefficients

and stop.

A code with all zero coefficients (a poor code) is chosen as the initial C. T is

initially chosen to be roughly one hundred times the expected BER of the best code.

In the beginning, almost all perturbations are accepted. However, as the temperature

is reduced, the acceptance probability will be lowered. The temperature is reduced

by a factor a = 0.9 after three energy drops (N_ = 3) or after more than 20 (Ni =

20) perturbations, whichever comes first. The algorithm terminates if five (No =

5) consecutive temperature stages do not produce any change in the code. The

choice of parameters is obtained by experimentation. With the above parameters,

the algorithm is usually terminated after several hundred to several thousand codes

are searched and seems to yield satisfactory results.

To compare the two construction algorithms, trellis codes for 8-PSK modulation

with constraint length v = 7 and 8 are constructed. A total of two hundred codes

are evaluated for the CA-1 while about one thousand codes are evaluated for the

CA-2. The codes are evaluated at a SNR=7.75 dB which is slightly larger than the

P_ bound. The performance of the best codes is compared in Figure 5.3. It shows

that the codes constructed by the two algorithms perform almost the same. Since it

is much faster, the CA-1 is used in this paper for our code search.

Tables 5.1 and 5.2 show the computer search results for trellis codes with 8-PSK

and 16-QAM modulation where the row parity check H i is defined as in Chapter 4.

All the Hi's are expressed in octal form. The performance of the codes are evaluated

by sequential decoding. The real coding gain of the new (NEW), Ungerboeck (UG),

and Porath and Aulin (P&A) codes at a BER of 10 -s over an uncoded system are

also listed in the tables. The real coding gain is defined as the difference between
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Table 5.1: Trellis codes for 8-PSK modulation

V

Coding gain at BER of 10"5 (dB)

12

13

14

15

16

17

18

19

20

rio H 1 HE
NEW UG P&A

3 17 02 - 3.0 2.9 2.9

4 33 02 - 3.2 3.1 3.1

5 73 24 16 3.4 3.4 3.4

6 121 044 022 3.6 3.6 3.6

7 355 204 016 3.9 3.9 3.9

8 661 126 354 4.1 4.1 4.1

9 1725 0222 0624 4.3 4.3 4.3

10 3447 0752 0216 4.5 4.5 4.5

11 4451 3062 1724 4.6 - 4.5

10013 07476 03014 4.8 - 4.8

26135 11354 01706 5.0 - 5.0

54077 32206 06574 5.1 - -

142573 021504 036152 5.2 - 5.1

277005 116176 035760 5.3 - -

674241 174116 041642 5.3 - 5.3

1340765 0574302 0372662 5.3 - -

2514251 1057362 0236376 5.3 - -

06145724254573 2671042 5.3
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V

5

6

7

9

10

11

12

13

14

15

16

17

18

Table 5.2: Trellis codes for 16-QAM modulation

no

13

21

51

131

323

471

1523

2731

4267

10365

36467

53531

162515

242123

627325

1161671

H 1

02

04

32

062

O56

310

0532

1414

2376

06014

06304

20242

057022

165172

275752

0431510

H2

12

10

032

144

116

0054

1200

0140

01024

14340

24714

062276

064140

007350

0374242

H3

0500636

017062219 3122511 1165602 0741314

20 5110025 3637202 2242414 0727014

Coding gainatBER ofl0-5

(dB)

NEW UG

3.1 3.1

3.3 3.3

3.7 3.7

4.0 3.9

4.2 4.2

4.5 4.5

4.8 4.7

4.8 4.8

5.1

5.2

5.3

5.4

5.6

5.7

5.7

5.7

5.7

5.7
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Figure 5.3: Comparison of two code construction algorithms

the SNR's required to achieve a certain BEE for a coded system and an uncoded

system. They were determined by simulations. It is amazing to note that the new

codes achieve about the same or slightly larger real coding gains than the best known

codes. At lower SNR's (smaller BER), the new codes perform even better.

Tables 5.1 and 5.2 show that a trellis code with constraint length v = 16 can

achieve the channel cut-off rate at a BER of 10 -s. The real coding gains at a BER

of 10 -5 remain about the same for longer codes. Actually, the improvement of the

gains are not noticeable at a BEE of 10 -s when the cut-off bound is achieved. But

the performance indeed continues to improve with the increase of v. At lower BEE's,

the coding gains grow with the v for v larger than 16. For example, codes with a

constraint length v = 18 can achieve a BEE of about 10 -s at the cut-off rate hound.
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This showsa real codinggain of 6.2 and 6.6 dB overan uncoded4-PSK and 8-QAM

systemrespectively.

The performanceof rate 2/3 trellis codesfor 8-PSK modulation usingUngerboeck

codes,Porath and Aulin codes,and thenewcodesis further comparedusingsequential

decodingat an SNR= 7.75dB. The results is shownin Figure 5.4. It showsthat the

1 0 .2
E [ T I I I I I I

10.3

o 10 .4

n"

W

i_ 10 .5

10 e

1 0 .7

H new

HUG
P&A

\
, i , i i i , i i I , I , i , I i i ,

2 4 6 8 10 12 14 16 18 20 22

constraint length v

Figure 5.4: Performance comparison of trellis coded 8-PSK codes

new codes have the best performance over the entire range of constraint lengths.

Similar comparison for rate 3/4 trellis codes for 16-QAM modulation is shown in

Figure 5.5.

To see how the new codes perform over a wide range of SNR's, trellis codes for

8-PSK modulation with v = 4 and v = 7 are decoded using the Viterbi algorithm
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Figure 5.5: Performance comparison of trellis coded 16-QAM codes

and sequential decoding. The performance of the new codes along with Ungerboeck

codes of the same constraint length is shown in Figure 5.6 and 5.7 respectively.

Figure 5.6 shows that at low SNR, the new codes perform slightly better than the

Ungerboeck codes. This is due to the fact that the Ungerboeck codes have larger path

multiplidties than the new codes. A calculation of the distance spectrum shows that

in many cases the new codes have smaller multiplicities but less free distance than the

Ungerboeck codes. This is because the codes are constructed at a low SNR. Figure

5.7 shows that the new codes perform better than the Ungerboeck codes over a wide

range of SNR with sequential decoding. This is due to the fact that the Ungerboeck

codes were not designed for use with sequential decoding, i.e., their distance profiles
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Figure 5.6: Performance of new and Ungerboeck codes with Viterbi decoding

are suboptimum.

5.3 Simulation Results

In the previous section, trellis codes have been constructed using a probabilistic ap-

proach. In this section, simulation results are presented to show that the cut-off rate

bound can be achieved with the large constraint length trellis codes using sequential

decoding.

First, the conventional Fano algorithm is used to decode the trellis coded 8-PSK

and trellis coded 16-QAM. In the simulation, a buffer with an infinite size is assumed,
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Figure 5.7: Performance of new and Ungerboeck codes with sequential decoding

i.e., the Fano algorithm is allowed to run until the received data are decoded. The

simulation results for trellis coded 8-PSK with constraint lengths _, = 15 and t, = 16

along with the cut-off rate bound and the performance of uncoded QPSK :./stem are

shown in Figure 5.8. Figure 5.8 shows that the cut-off rate bound is achieved with

constraint length 15 code at a Bit Error Rate (BER) of 10 -s. This accounts for about

5.3 dB practical coding gain over an uncoded QPSK system at a BER, of 10 -5. It also

shows that the constraint length t, = 16 code can achieve a BER of 3.0 x 10-e at the

channel cut-off rate bound. Figure 5.4 shows that the performance of trellis coded

8-PSK improves with the code constraint length. We expect that the cut-off rate

bound can be achieved using our codes with larger constraint lengths at a BER of
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Figure 5.8: Performance of large constraint length trellis coded 8-PSK using sequential

decoding

10 -6 and below. Simulation indicates that the trellis coded 8-PSK with a constraint

length of 18 can achieve a BER smaller than 10 -6 at the cut-off rate bound. Looking

at Figure 5.8, we find that the required SNR for an uncoded QPSK to achieve a BER

of 10 -6 is about 13.8 dB. Thus, a trellis coded 8-PSK with a constraint length 18

using sequential decoding can achieve about 6.2 dB real coding gain over an uncoded

QPSK system at a BER of 10 -6.

Similarly, in Figure 5.9, we show the simulation results for trellis coded 16-QAM

with constraint lengths v = 15 and v = 16 along with the cut-off rate bound and

the performance of uncoded 8-QAM system using the Fano algorithm. It shows that
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Figure 5.9: Performance of large constraint length trellis coded 16-QAM using se-

quential decoding

the cut-off rate bound can also be achieved with constraint length 15 code at a Bit

Error Rate (BER) of 10 -s. This accounts for about 5.T dB practical coding gain over

an uncoded 8-QAM system at a BER of 10 -5. Figure 5.9 shows that the constraint

length v = 16 code results in a BER of 6.0 x 10 -6 at the channel cut-off rate bound.

In Figure 5.5, we see that the performance of trellis coded 16-QAM also improves

with the code constraint length. We also note that the trellis coded 16-QAM with

a constraint length of 18 can achieve a BER smaller than 10 -6 at the cut-off rate

bound, which accounts for about 6.6 dB real coding gain over an uncoded 8-QAM

system at a BER of 10-e.
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Figure 5.8 and 5.9 show that the cut-off rate bounds can indeed be achieved.

However, in practice, the assumption of an infinite buffer is not realistic. The buffer

will always be finite. In this case, the buffer will overflow eventually no matter

how large it is since the computational effort is a random variable with a Pareto

distribution. When a buffer overflows, the incoming data will be lost in a continuous

communication system. The amount of the lost data will depends on the time that the

decoder spend to overcome some severely corrupted branches. In Figure 5.10, we show
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Figure 5.10:

BLA

Performance of large constraint length trellis coded 8-PSK using the

the performance of trellis coded 8-PSK with constraint length v = 15 and 16 using

the BLA described in Chapter 3, which guarantees erasurefree decoding. The block
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decoding BLA with a speedfactor p = 16, a block size L = 512 branches (signals),

and a buffer size B = 64 K branches (signals) was used for our simulations. It shows

that the cut-off rate bound can be achieved at a BER of 10 -s with a v - 1(5 code,

one more than the case of conventional sequential decoding as shown in Figure 5.8.

Figure 5.11 shows the performance of trellis coded 16-QAM with constraint length

10"4

v=lq

10.5
t,.,.
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Figure 5.11: Performance of large constraint length trellis coded 16-QAM using the

BLA

v = 15 and 16 using the BLA with/_ = 16, L = 512 branches (signals), mad B = 64

K branches. Similar conclusion can be drawn from Figure 5.11, i.e., the cut-off rate

bound can be achieved at a BER of 10 -s with a v = 16 code. Using similar arguments

as in the case of conventional sequential decoding, we see that the coded 8-PSK and
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16-QAM can achieve about 5.3 dB and 5.7 dB real coding gains over uncoded QPSK

and 8-QAM modulations. Our simulations indicate that the trellis coded 8-PSK and

16-QAM with a constraint length of 19 can achieve a BER of smaller than 10 -6 at

the cut-off rate bounds. This accounts for about 6.2 dB and 6.6 dB real coding gains

over uncoded QPSK and 8-QAM modulations at a BER of 10 -6.
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6

SHAPING AND CODING

So far, we have discussed the application of sequential decoding to trellis codes and

the construction of trellis codes for use with sequential decoding. It has been shown

that the cut-off rate bound P_ can be achieved. In Chapter 1, it was shown that the

difference between R0 and R_ is about 1.5 dB for higher spectral efficiencies. This

was defined as shaping gain with respect to channel cut-off rate.

In a coded modulation system, a shaping gain can be achieved by using either

higher dimensional spherical constellations[5, 22, 27] or appropriately designed shap-

ing codes [3, 4, 24, 48]. However, it has been recognized [4, 24] that it is advantageous

to pursue shaping gain directly via a shaping code rather than indirectly via shaping

a higher dimensional constellation. Existing schemes[4, 24] that employ shaping and

coding utilizes one or more normal codes and a shaping code separately. Forney and

Wei [24, 27] assert that saaping and coding are separable and additive at high data

rates (spectral efficiencies). However, Pottie and Calderbank [62] recently argued

that shaping and coding may not be separable in the limit of large code complexity.

Are they talking about the same thing? What is the separability of shaping and

coding? What does it imply? In this chapter, we try to answer these questions. In

Section 6.1, coded modulation is reviewed. In Section 6.2, shaping gain is defined in

a shaped modulation system. In Section 6.3, the separability of shaping and coding

129



in a coded/shapedsystemis examined.

6.1 Coded Modulation

Only QAM modulation is considered in this chapter. Coded modulation combines

coding and modulation into one scheme. It has been shown that significant coding

gain can be achieved by doing so. To transmit kc information bits/T (T is the

modulation time period) using a rate kc/nc code, a 2 "< point constellation is needed.

The coding Constellation Expansion Ratio is defined as

CERc = 2"<-k<. (6.1)

Normally, the points in a coded modulation scheme are used with equal probabil-

ity. Assume that the minimum (squared) distance between the points is _. Then,

the average energy per signal can be obtained using a continuous approximation[27]

Ec- 2"<d_16. (6.2)

Assume that the minimum distance in the uncoded modulation system is _. Simi-

larly, the average signal energy for the uncoded system can be obtained as

E_, = 2k<d2,,/6. (6.3)

Suppose that a coded modulation system has a free distance of _r,,. For an uncoded

modulation system to achieve the same performance as the coded modulation system,

the minimum distance of the uncoded modulation system _ must be as large as _r,,,

i.e., an uncoded system requires an average signal energy of
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E_, = 2kcd_e_/6 (6.4)

to maintain the same performance. The coding gain Gc can then be defined as the

energy reduction of a coded modulation system over an uncoded modulation system

expressed in dB, i.e.,

Gc = 101og,0 2",_ = 10log,0 CERc x _"

The merit of coded modulation may also be demonstrated by random coding

arguments. Shannon[68] showed that arbitrarily low error probability can be achieved

when coding is employed as long as the transmission rate is smaller than the channel

capacity. The channel capacity for a 2'_c point constellation is given by[70]

E, log s exp -2-_i , (6.6)C" = no- _ k=o i_o

where Ez denotes the expectation of z and {ai, i = 0, 1,... ,2 TM - 1} are the con-

stellation points. C" can be evaluated by Monte Carlo techniques for a given Signal

to Noise Ratio (SNR), which is the average signal energy over the single sided noise

power spectrum No.

Example 1. SNR = 9.30 dB is required to achieve C" = 3 bits/T for a 16-QAM

modulation.

6.2 Shaped Modulation

We are interested in using a shaping code to achieve shaping gain. In a shaped

system, the signa_ with less energy are used more often and thus the signals are

nonequiprobable.
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Similar to codedmodulation, the constellation is expandedfrom 2"' to 2"° points

to transmit rs bits when a rate rs/n, shaping code is used. The shaping Constellation

Expansion Ratio is

CER,=2 "'-_°. (6.7)

Let Ep be the average signal energy of a shaped modulation scheme. Shaping does

not change the minimum distance between signal points in the constellation. Thus,

the performance remains the same. A shaped modulation scheme can transmit up to

2rlJ n 1

H(p) = - _ pilog2pi (6.8)
i=0

bits of information, where p denotes the probability vector (p0, px," "', p2-°-x) and pi

is the probability that the shaping scheme selects the i-th point in the constellation.

Then the shaping gain G8 can be defined as the energy reduction of the shaped mod-

ulation system over the unshaped modulation system at the same spectral efficiency,

i.e.,

EU

G, = lOlogm _-_p, (6.9)

where E_ denotes the average signal energy of the unshaped modulation system,

which can be computed using the continuous approximation as

Eu r j 2= 2 d_,/6 = 2H(P°'P'"'"P_"'-')_/6. (6.10)

E_, can also be obtained by exact calculation. Suppose that the i-th point in the

constellation has a signal energy of Ei, we then have the average signal energy of such

a signaling system
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_¢s $ -- I

E(p)-- _ p,E,. (6.11)
i=O

An ideal shaping scheme is the one that minimizes E(p) with the constraints that

_2 ns -1i=0 p_ = 1 and H(p) = r,. Define

and

f(p)=r.-H(p) (6.12)

_NR__|

g(p) = _ p,- 1. (6.13)
i=O

We need to minimize E(p) subject to the constraints f(p) = 0 and g(p) = 0 to obtain

Ep. We define

F(p, A, ¢) = E(p) + Af(p) + ¢9(P).

Applying Lagrange multipliers, we obtain

(6.14)

Ei+A(log2pi+log 2e)+¢=0, i=0,1,...

_"_2n. -1i=0 Pi-- I =0,

r, - H(p) = 0,

,2 "° - 1,

(6.15)

i.e., Pi should be chosen as

p_ = 2--_-_ -'°s2 ¢, (6.16)

where A and ¢ are chosen such that the probabilities sum to 1 and the entropy H(p)

is equal to the desired transmission rate vs. (6.16) shows a Gaussian-like distribution,

agreeing with the intuition of Forney and Wei[27].

133



Example '2. Shaped 64-QAM over 8-QAM (regular). 64-QAM is shown in Figure

6.1. The base (unshaped) modulation constellation is shown in Figure 6.2. Suppose

d o

Figure 6.1: Constellation of 64-QAM modulation

that d_ = 4 and let do = d,. Then we obtain E_ = 5 using exact calculation. Using

(6.16), we obtain a set of p such that Ep = 3.75. Thus, Go = 1.25 dB.

Example 3. Shaped 64-QAM over 8-QAM (non-regular). The base (unshaped)

modulation constellation is shown in Figure 6.3. Suppose that _ = 4 and let do = d,,.

Then we obtain E,, = 6 using exact calculation. Using (6.16), we obtain a set of p
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Figure 6.2: Constellationof regular 8-QAM modulation

suchthat Ep = 3.75. Thus, G. = 2.04 dB.

Example 4. Shaped 64-QAM over 16-QAM. T: base (unshaped) modulation

constellation is shown in Figure 6.4. Suppose that _ = 4 and let do = d_. Then we

obtain E,, = 10 using exact calculation. Using (6.16), we obtain a set of p such that

Ep = 7.5. Thus, G, = 1.25 dB.

Existing shaping schemes [3, 4, 24, 48] can achieve a good portion of this shaping

gain.
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Figure 6.3: Constellation of non-regular 8-QAM modulation

6.3 Coded/Shaped Modulation

There are two ways to integrate coding and shaping in a modulation system. Fig-

ure 6.5 shows a separated coded/shaped modulation system in a parallel structure.

Forney's trellis coded/shaped scheme/24] and Calderbank and Ozarow's multilevel

coded/shaped scheme/4] can be represented this way. Calderbank and Ozarow[4]

have stated that "the separability of coding and shaping means that one part of the

input data stream drives C1, (72 (normal codes) and produces coding gain (over un-
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dtl

Figure 6.4: Constellationof 16-QAM modulation

codedtransmission), and a different part of the input data streamdrivesC3 (shaping

code) and produces shaping gain (over equiprobable signaling). The two types of

gain add." This definition of separability was motivated by the separated structure

as shown in Figure 6.5. Obviously, schemes with this structure satisfy the first con-

dition of the separability definition. Do they satisfy the second condition, i.e., do

shaping gain and coding gain add? Furthermore, can schemes with this structure

achieve Shannon's bound[68]? We now try to answer these questions.

Let E_ be the average signal energy in a coded/shaped modulation system. We
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Figure 6.5: A separated coded/shaped system in parallel structure

define the total gain as

G
E_

= 10 loglo

E_ Eo
= lOloglo _ + lOloglo

= ao+a',, (6.17)

where G', is the shaping gain of a coded/shaped modulation system over a coded

138



modulation system. If G', = G,, then shaping gain and coding gain are additive as

shown in (6.17). We now give a counter example showing that G', 7/: G,.

Example 5. Examples 2 and 4 show that G, :_f 64-QAM over 8-QAM or 16-QAM

is 1.25 dB. Example 1 says that SNR = 9.30 dB is required to achieve C" = 3.0

bits/T. Then, if G', = G,, we only need

Es1D

SNR = 101oglo

Ec E,p

= 10 logl0 _00 + 10 loglo E---_"

= 9.3o- c:

= 8.05 dB (6.18)

to transmit 3.0 bits of information per signal when shaping is employed. This contra-

dicts Shannon's bound[68], which says that we need at least SNR = 8.45 dB to realize

reliable communication at a transmission rate of 3 bits/symbol with two dimensional

signals. We conclude that the second condition of Calderbank and Ozarow's defini-

tion of separability cannot be satisfied. This can be attributed to the fact that the

signals in a coded sequence are no longer independent.

Examining the above example, we see that the contradiction arises because the

shaping gain 3'_ of an infinite QAM signal set with nonequiprobable signaling (a

discrete distribution is applied in the example) over the original QAM signal set with

equiprobable signaling is larger than the gap % between the SNR computed using

the Shannon's bound (corresponding to nonequiprobable signaling) and the SNR

computed using Ungerboeck's formula (corresponding to equiprobable signaling) at

the same transmission rate. Noting that both % and % increase with the transmission

rate and approach the ultimate shaping gain of 1.53 dB, our example implies that

% is always larger than %. Thus, the second condition of Calderbank and Ozarow's
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definition of separability can only be satisfied in the limit of infinite spectral efficiency.

Now, we return to the second question posed at the beginning of this section, i.e.,

can schemes with the structure shown in Figure 6.5 achieve Shannon's bound? For

a coded/shaped modulation system with the structure shown in Figure 6.5, a 2 "'+'°

point signal set is needed and the signal set must be partitioned into 2"" subsets.

Then the free distance in this structure is limited to the minimum distance between

points in the subsets _o, i.e., _/r,, < _, = a,_, where an = _c/_ < oo since

_c < o0. Thus, the total gain of such a system is limited, i.e.,

G = Go+c;

< 10log10 CERe x _ + 1.53

am

< 10 log10 CE'-'--'_ + 1.53

< c_. (6.19)

On the other hand, it is shown in [65] that _/r,, increases without bound. Thus,

Ge _ oo and so G _ ¢x_ for a general coded/shaped modulation system. This shows

that the Shannon bound cannot be achieved with this structure. It is in this sense

that Pottie and Calderbank[62] argued that shaping and coding cannot be separated.

Example 6. Assume that a rate 1/3 shaping code and a rate 2/3 normal code are

used to transmit 3 bits/T in a coded/shaped modulation system. Then CERe = 2

and a 64-QAM constellation is required. The 64-QAM signal set must be partitioned

into 8 subconstellations. The shaping code selects one of the subconstellations and

the normal code selects a point in a subconstellation. Figure 6.6 shows a mapping

obtained by set partitioning. It clearly shows that an = 8 in this case. Thus, the

total gain of this system is
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Figure 6.6: Mapping of 64-QAM in a coded/shaped system
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G _ 10 log10 CER----"_+ 1.53

= 7.55 dB. (6.20)

Another way to integrate coding and shaping in a modulation system is shown

in Figure 6.7. It achieves shaping gain by augmenting the coded modulation using a

x 1
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mapper
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Figure 6.7: A separated coded/shaped system in cascade structure

shaping code, while the coding gain is achieved with a normal code. Obviously, this

structure avoids the limitations on coding gain of the parallel scheme. Using similar

arguments, we can show that shaping gain and coding gain with this structure still do

not add. Another question related to this structure is whether the existing shaping

schemes [3, 4, 24, 48] can be adapted to this structure? Our attempts thus far have

been unsuccessful. An interesting open question is how to design a shaping scheme

that can be integrated with this structure?
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7

CONCLUSIONS

Channel cut-off rate is considered as the practically achievable rate by many people.

In this dissertation, we have investigated approaches to achieve the cut-off rate at a

Bit Error Rate (BER) of I0 -s - 10 -6 for bandlimited Additive White Gaussian Noise

(AWGN) channels. Three aspects of trellis coding have been explored. These are the

application of sequetial decoding and its modifications to trellis codes, construction

of trellis codes for use with sequetial decoding, and exploration of the relationship

between shaping and coding.

In Chapter 2, sequential decoding of trellis codes is addressed. The Fano metric

is shown to be a maximum likehood matric for variable length codes on a bandlim-

Red AWGN channel. Demodulator quantization for PSK and QAM modulations is

discussed. Rectangular and angular quantization schemes for PSK modulation are

compared using simulation. It shows that rectangular quantization scheme outper-

forms angular scheme at high definitions. A simple method to increase the distance

of trellis codes in the tail is presented and the tail's influence on performance is stud-

ied. The performance of trellis codes using sequential decoding is then investigated.

Simulation results show that sequential decoding performs slightly worse than the

Viterbi algorithm for the same constraint length code. However, this suboptimaiity

of sequential decoidng can be overcome using a slightly larger constraint length code
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with little penalty of computational complexity. It is then shown that the perfor-

mance of trellis codes using sequential decoding improves steadily with the increase

of the code constraint length and the channel cut-off rate bound can be achieved at

a BER of 10 -s. It is also shown that the distribution of computational effort for

sequential decoding of trellis codes can be approximated by a Pareto distribution.

In Chapter 3, an erasurefree sequential decoding algorithm is introduced. Sev-

eral versions of the algorithm can be obtained by choosing certain parameters and

selecting a resynchronization scheme. These can be categorized as block decoding or

continuous decoding, depending on the resynchronization scheme. Block decoding is

guaranteed to resynchronize at the beginning of each block, but suffers some rate loss

when the block length is relatively short. The performance of a typical block decoding

scheme is analyzed and we show that significant coding gains over Viterbi decoding

can be _hieved with much less computational effort. A resynchronization scheme

is proposed for continuous sequential decoding. It is shown by analysis and simula-

tion that continuous sequential decoding using this scheme has a high probability of

resynchronizing successfully.

In Chapter 4, The relationship between the distance properties of trellis codes

and the compuational effort of sequential decoding is studied and trellis codes for

8-PSK and 16-QAM modulation with Optimum Distance Profile (ODP) and Opti-

mum Free Distance (OFD) are constructed. The design criteria for trellis codes with

sequential decoding are examined. A comparision of trellis codes with ODP and OFD

reveals that both ODP and OFD trellis codes for some constraint lengths may not re-

sult in the best trade-off between error performance and computational performance

when sequential decoding is used. A new code construction algorithm is proposed to

construct robustly good trellis codes for use with sequential decoding. Trellis codes

with asymptotic coding gains up to 6.66 dB are obtained using this algorithm and
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the new codes achievenearly the samefree distancesas the OFD codesand nearly

the samedistance profiles as the ODP codes. Simulation results showthat the new

codesoutperform the best known trellis codesin terms of error probability as well as

computational effort.

In Chapter 5, probabilistic construction algorithms are investigated for construct-

ing good long trellis codes that can achieve the channel cut-off rate at a BER of

10 -s - 10 -6. The algorithms are motivated by the random coding bound for trellis-

type codes. One algorithm begins by choosing a relatively small set of codes randomly.

The error performance of each of these codes is evaluated using sequential decoding

and the code with the best performance among the chosen set is retained. Another

algorithm treats the code constrcution as a combinatorial optimization problem and

introduces simulated annealing algorithm to conduct the code search work. Codes

for 8-PSK and 16-QAM modulations with constraint lengths v up to 20 and practical

coding gains up to 6.6 dB at a BER of 10 -s - 10 -_ are obtained. It is surprising to

find out that the new codes found in this paper, which come from a very small set

of codes compared to the total number of possible codes, perform about as well as

the best known codes at a BER of 10 -s. Simulation results show that the codes con-

structed in this approach can achieve the cut off rate bound at a BER of 10 -s - 10 -8

which correspond to 5.3 - 6.6 dB real coding gains over uncoded systems.

In Chapter 6, the separability of shaping and coding in a coded/shaped modulation

system is examined. It is shown that the existing schemes that employ shaping as

well as coding cannot approach Shannon's bound. It is also shown that shaping gain

and coding gain do not add in a separated coded/shaped modulation system, i.e., the

second condition of Calderbank and Ozarow's definition of separability of shaping

and coding (additivity of shaping gain and coding gain) is not satisfied. This can be

attributed to the fact that the signals in a coded sequence are no longer independent.
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